STORMWATER IMPACT REPORT

FOR

DADA BHAGWAN VIGNAN INSTITUTE (DBVI)

BLOCK 37.02 - LOT 46.03 630 SOUTH MIDDLEBUSH ROAD TOWNSHIP OF FRANKLIN SOMERSET COUNTY, NEW JERSEY

OCTOBER 2019 REVISED APRIL 2020

Prepared For:

<u>Owner & Applicant:</u> Dada Bhagwan Vignan Institute 630 S. Middlebush Road Somerset, NJ 08873

Prepared By:

THE REYNOLDS GROUP, INC. 575 ROUTE 28, SUITE 110 RARITAN, NEW JERSEY 08869

F Mitch Ardun

F. Mitchel Ardman, P.E. NJ License No. 34317

TRG Project No. 14-001

TABLE OF CONTENTS

Section	ltem					
Ι.	Project Summary	1				
II.	Discussion of Stormwater Impact					
A. B. C. D.	Stormwater Quantity Stormwater Quality Groundwater Recharge Groundwater Mounding	1-4 4-5 5-6 6				
III.	Stormwater Conveyance System Design	6				
APPENDIX A	MAP FIGURES					
Figure Figure Figure Figure	 Tax Map - (Franklin Township Tax Map Sheet #33) Road Map - (Google Maps) 					
APPENDIX B	CALCULATIONS FOR STORMWATER QUANTITY ANALYSIS					
	HydroCAD models for allowable 2, 10, and 100-year storm flows HydroCAD model for proposed flows for 2, 10, and 100-year storms HydroCAD model for emergency spillway check and Channel Report					
APPENDIX C	STORMWATER QUALITY ANALYSIS					
	HydroCAD model for NJDEP water quality design storm Vegetated Filter Strip evaluation					
APPENDIX D	GROUNDWATER IMPACT ANALYSES					
	Annual Groundwater Recharge Analysis Estimated Drain Time Calculation Groundwater Mounding Hantush Modeling Spreadsheet					
APPENDIX E	SOILS INVESTIGATION RESULTS					
	Excerpts from Soils Report by Others					
APPENDIX F	CONVEYANCE SYSTEM CALCULATIONS					
	Computations for Sizing of Proposed Stormwater Conveyance Pipes Conduit Outlet Protection (COP) Sizing Calculation Anti-Seep Collar Calculations					
APPENDIX G	NONSTRUCTURAL STRATEGIES					
	Low Impact Development (LID) Checklist Nonstructural Strategies Point System (NSPS) Spreadsheet for DRCC					
MAP POCKE	 Drainage Area Maps DA-1 Existing Conditions Drainage Area Map DA-2 Proposed Conditions Drainage Area Map 					

I. PROJECT SUMMARY

The applicant proposes to construct a 21,083 square-foot house of worship and associated site improvements on this property on South Middlebush Road. These improvements will include widening and paving the existing driveway, the construction of two parking areas, walkways, landscaping and various utility improvements. The site is accessed via the existing driveway off S. Middlebush Road. The area of the site is 695,276 sf or 15.96 acres; the total existing impervious coverage on the site is 0.15 acres. The existing dwelling and a portion of the existing gravel driveway will remain. The total proposed impervious coverage is 2.97 acres.

The additional impervious coverage will result in an increase in site stormwater runoff. In order to mitigate the impact of this increase, a combination of structural and nonstructural techniques is proposed. An infiltration basin with extended detention storage volume is proposed to collect, store and release, at a reduced rate, stormwater runoff from a majority of the developed portion of the site. The basin will be constructed in accordance with state and local stormwater management regulations. In order to address runoff impacts for the areas which will bypass the detention basin, vegetated filter strips and non-structural methods will be utilized. A Low Impact Development (LID) Checklist and Non-Structural Strategies Point System (NSPS) Spreadsheet for this project are provided in Appendix G. The design of the structural stormwater BMPs and the overall stormwater management plan for this project are discussed in detail below.

II. DISCUSSION OF STORMWATER IMPACT

A. STORMWATER QUANTITY

The existing site consists of a large, wooded area encompassing 70% of the site with a previously cultivated area that is now maintained grassland covering the remainder of the property. The gravel driveway, existing dwelling and surrounding pocket of lawn area sits within the wooded area. According to the USDA Web Soil Survey the site is comprised of Lansdowne, Penn, Rowland and Royce silt loams, which are all classified as Hydrologic Soil Group 'C'.

Since the proposed development will result in an increase in on-site impervious area, measures must be taken to mitigate the impact of the resulting increase in stormwater runoff. In order to adequately design these measures, a hydrologic study of the site has been performed. The hydrologic study reflects the natural topography of the existing site in that there are three subareas of analysis. As shown on the Existing Conditions Drainage Area Map (DA-1), Drainage Area #1 flows into the existing wetlands pocket in the southeastern corner of the site. Drainage Area #2 flows primarily toward the northeasterly property line. Drainage Area #3 flows toward South Middlebush Road. The hydrologic analysis compares existing and proposed site flows from the three drainage areas, as well as the combined overall site flow.

In accordance with state and local stormwater regulations, the analysis of the stormwater runoff impact must reflect a reduction in flows after any improvements which increase runoff from the site. As such, the flow analysis includes the computation of "allowable" post development flows. These allowable flows are existing flow values with appropriate reduction factors applied to the undeveloped portion of the site which will be improved. The appropriate reduction factors are as follows: 50% for the 2-year frequency storm, 75% for the 10-year storm, and 80% for the 100-year storm. In the case of this development, the reduction factors were applied to all existing pervious areas, including the gravel driveway, which will become impervious, and existing wooded areas that will become lawn. The reduction factors have not been applied to those areas outside of the project limit of disturbance, nor to those existing developed areas, including lawns, which will remain as they are.

In order to reduce the stormwater runoff from the site to required levels, an infiltration basin with sufficient storage volume to provide extended detention is proposed. The proposed basin is located in Proposed Drainage Sub-Area #1A. The required reduction in runoff will be achieved by capturing, storing and releasing at a reduced rate the runoff from the proposed building, two parking areas and a portion of the resurfaced driveway.

Due to the natural topography of the site, a portion of the proposed driveway will bypass the detention basin. The developed flow from this 0.4-acre driveway impervious coverage located in Drainage Areas 2 & 3 will be offset by re-vegetating part of the previously cultivated areas within those drainage areas. The re-vegetation will consist of native deciduous shrubs and grasses. This environmental restoration will serve as a non-structural, low impact development (LID) technique to reduce runoff from Drainage Areas 2 and 3. The planted area will act as "brush" (NRCS TR-55 methodology curve number classification), thereby reducing the curve number and subsequent runoff from this portion of the existing open space area. The area of re-vegetation has been sized so that post development flows in the two drainage areas will be less than allowable.

The proposed stormwater BMPs have been designed to reduce the site runoff to below allowable flow values through either storage and attenuation of site flows (detention basin) or reduction in runoff (re-vegetation). The site flows were developed using SCS methodology and HydroCAD modelling software. The complete output from the 2, 10 and 100-year HydroCAD models (allowable and proposed conditions) is located in Appendix B. The results of the hydrologic models are summarized in the table below.

ALLOWABLE FLOW	Storm Frequency (years)			
	2	10	100	
All-1: Allowable DA-1 flow to SE corner	3.11	7.76	17.79	
All-2: Allowable DA-2 flow to NE property line	2.92	6.87	15.29	
All-3: Allowable DA-3 flow to S. Middlebush Rd	2.36	5.61	12.55	
Tot Allow: Combined Allowable flow from site	8.20	19.99	45.12	

Summary of Site Flows:

PROPOSED FLOW	Storm Frequency (years)			
	2	10	100	
Pr-1: Proposed DA-1 flow to SE corner ¹	3.06	6.16	17.64	
Pr-2: Proposed DA-2 flow to NE property line	2.80	6.16	13.47	
Pr-3: Proposed DA-3 flow to S. Middlebush Rd	2.21	5.11	11.59	
Tot Prop: Combined Proposed flow from site	7.91	17.72	41.24	

¹ The proposed flow from DA-1 is the summation of the hydrographs representing the basin outflow and the bypass flow (Proposed Subcatchment 1b in HydroCAD model). The basin inflow is represented by Proposed Subcatchment 1a.

Summary of Infiltration/Detention Basin Output (Basin in DA-1a):

Storm Frequency:	2-year	10-year	100-year
Basin Inflow (cfs)	6.59	10.63	18.63
Basin Outflow (cfs)	0.23	0.46	4.33
Water Surface Elev.	106.47	107.37	108.44

* The crest elevation of the Emergency Spillway is 108.50; therefore, the required 100-yr storm storage volume is contained within the basin.

As indicated in the tables above, the proposed infiltration/extended detention basin will provide adequate storage volume to control the rate of runoff from the site to <u>allowable</u> flow levels in Drainage Area #1. The LID technique will effectuate a reduction in proposed runoff to allowable runoff rates for Drainage Area #2 and #3.

In order to safely convey extraordinary flows from the basin, a 20-foot wide emergency spillway will be provided. To check the adequacy of the spillway width, the NJDEP emergency storm (100-year + 50%) has been routed through the basin. The results of this model can be found in Appendix B and are summarized below:

Infiltration/Detention Basin – Emergency Spillway Storm 20'-wide Spillway – Crest @ 108.50						
100 yr Infiltration Basin Inflow	28.99 cfs					
Flow through Emergency Spillway	23.12 cfs					
Peak Water Surface Elevation	108.88					
Top of Berm Elevation	110.0					

Since the peak water surface elevation of the model with flow through the emergency spillway is less than the top of berm elevation with ten inches of freeboard provided, the spillway is adequately sized. The 20-foot wide spillway is not in a fill area; therefore, a grass-lined spillway channel is proposed. The spillway flow has been analyzed to determine its velocity in the downstream channel. As shown in the calculation sheet

included at the end of Appendix B, for a flow of 23.12 cfs in a 20-foot wide grass-lined channel at 4.8%, the velocity of flow is 1.97 fps. Since this velocity is below maximum allowable velocity for silt loam (2.0 fps), a vegetated channel is sufficient.

B. STORMWATER QUALITY

In addition to providing quantity control, the proposed infiltration/extended detention basin will provide water quality treatment for the site runoff. Per the NJDEP Stormwater BMP Manual, infiltration of the water quality storm through 6-inch thick sand bottom will provide 80% TSS removal. In order to design the BMP to adequately provide treatment, the water quality design storm was routed through the basin to determine the invert of the lowest quantity control outlet, consistent with best management practices for the design of infiltration basins. This model is located in Appendix C and is summarized in the table below:

Bio-Retention Basin – WQ Storm							
Water Quality Inflow	4.77 cfs						
Water Quality Outflow	0.0						
WQ Water Surface Elev.	105.32						
Depth of Peak Storage	9.8 inches						

The peak elevation of the water quality design storm is 105.32, about 10 inches above the basin bottom (elev. 104.5). The lowest outlet, a 4" orifice, is set above this peak elevation at 106.00. Therefore, the entire water quality design storm will be infiltrated.

The infiltration basin has been designed to the meet the criteria outlined in Chapter 9.5 in the New Jersey Stormwater Best Management Practices Manual. The sand bottom will be 6 inches thick. Soils testing was performed by Bayer-Risse Engineering, Inc. (see excerpts of their report in Appendix E). Soil Log numbers 0627-3 and 0627-4 pertain to the proposed infiltration/detention basin location. As noted in the Soil Test Summary Data table located in the appendix, the depth of groundwater observed in stormwater soil logs #3 and #4 were 100" and 80", respectively. Based upon the ground elevation at these test locations, the observed elevations of groundwater were 101.87 and 100.83. Using the more conservative elevation (101.87), in order to meet the BMP criteria that the bottom of the 6-inch thick sand layer be a minimum of 2 feet above seasonal high groundwater, the surface elevation of 104.5 therefore meets this criterion.

As noted in Section B above, not all proposed impervious surfaces can be conveyed to the infiltration basin. The front portion of the drive is instead designed without curbing to allow runoff to sheet flow across the adjacent existing wooded area. This area will serve

as a vegetated filter strip. The natural, forested filter strip has been evaluated per the criteria noted in Chapter 9.10 of the NJDEP Stormwater BMP Manual. This evaluation indicates that the natural vegetated filter strips within Drainage Areas #2 and #3, meet the criteria for 80% TSS Removal. The summary below reflects the more detailed analysis provided in Appendix C of this report.

Drainage Area ¹	Actual Min. Length of Filter	Actual Max. Average Slope ²	Min. Required Length for 80% TSS Removal ³
2	90 ft	3.5%	40 ft
3	70 ft	4.0%	43 ft

¹ Soils in both Drainage Areas are Hydrologic Soil Group C

² Maximum Allowable slope for filter in Existing Forest Area is 8%

³ From Chart D (for HSG C) and Existing Forest Areas Curve

The on-site stormwater management measures, a combination of the proposed infiltration basin and the vegetated filter strips, will therefore meet state and local stormwater pollutant removal criteria by reducing the average annual total suspended solids load by 80 percent.

C. GROUNDWATER RECHARGE

As noted above, the stormwater management BMP proposed as part of the site improvements has been designed to infiltrate stormwater runoff. The New Jersey Groundwater Recharge Spreadsheet (NJGRS) has been utilized to provide an analysis of the pre and post development annual groundwater recharge. As shown in the computations provided in Appendix D, the required effective depth of the stormwater BMP (dBMP) to provide the appropriate recharge volume (i.e., the post-development annual recharge deficit) is 3.9 inches. Since a depth of 18 inches is provided in the basin below the first outlet (the 4" orifice at 106.00), the infiltration basin as designed provides enough storage volume to effectively recharge stormwater runoff from the post-development site.

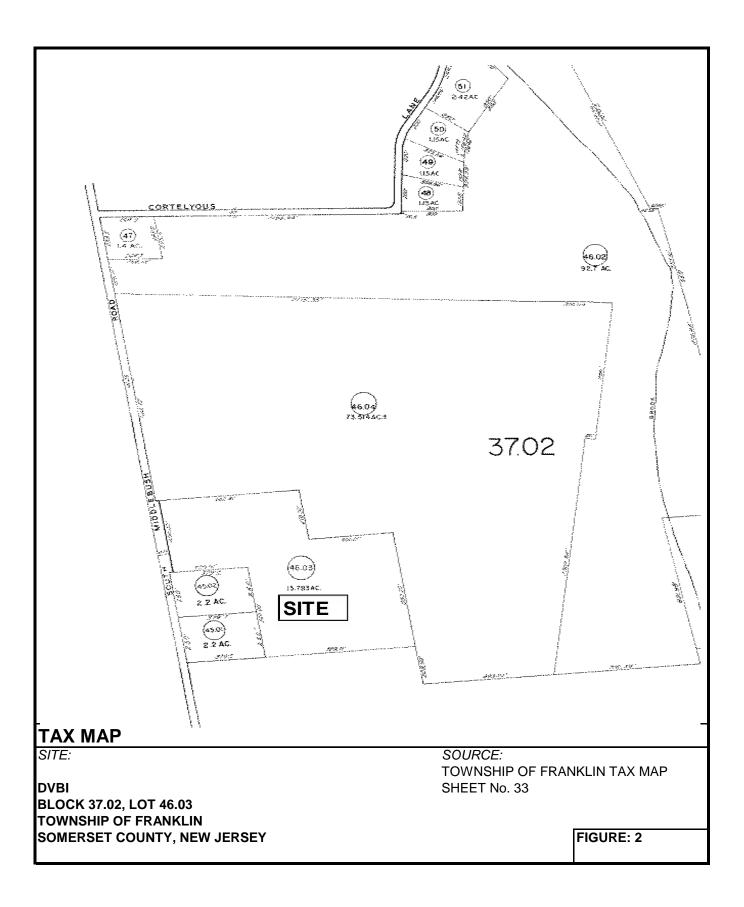
An investigation of the permeability of the onsite soils has been performed, by Bayer-Risse Engineering, Inc., to ensure that the runoff to the stormwater management basin will infiltrate at an acceptable rate. Test pits #3 and #4 were excavated within the footprint of the infiltration basin (see Drainage Area map #2 for location). As shown in the soil testing results provided in Appendix E of this report, the soils in this area are primarily a mix of sandy clay with sandstone pebbles. The testing conducted yielded permeability rates of 160.0 and 114.7 inches per hour for test pits 3 and 4, respectively. These rates are more than sufficient to allow the infiltration of stormwater runoff in this area. In accordance with the NJDEP Stormwater BMP Manual, the maximum design infiltration rate of 10 inches per hour was used in calculations. As a best management practice, no standing water shall remain in an infiltration basin 72 hours after the design rainfall event. The peak storage calculated with the infiltration basin and the maximum design permeability rate allowed were used to compute the drain time for the stormwater BMP (see Appendix D). The drain time for the infiltration design flow, which is the runoff resulting from the water quality storm, has been calculated to be 1.8 hours.

D. GROUNDWATER MOUNDING

A groundwater mounding analysis has been performed using the Hantush equation spreadsheet. The analysis indicates that the mounding created by the infiltration of runoff in the stormwater management facility will not adversely impact the functioning of the infiltration basin. The permeability parameters for the site and the calculation methodology described in the USGS/NJDEP report "Simulation of Groundwater Mounding Beneath Hypothetical Stormwater Infiltration Basins" were used in the analysis. The resulting groundwater mounding height is 2.4 feet. Based on the soils testing data, the observed depths of the seasonal high water table results in an estimated average groundwater elevation within the basin of 101.35. Applying the calculated mounding height to this elevation results in a peak mound elevation of 103.75, which is below the bottom of the basin sand layer (104.0). The spreadsheet result for this analysis is located in Appendix D.

III. STORMWATER CONVEYANCE SYSTEM DESIGN

Calculations supporting the design of the proposed stormwater conveyance system are in Appendix F of this report. The inlet flows were computed using the Rational Method and cumulative pipe flows are compared to pipe capacity. A 25-year design storm was utilized; the critical pipe runs directly into in detention basin were checked for 100-year capacity. Inlet drainage areas are shown on map DA-2.


The design of the stormwater management basin reflects New Jersey's Standards for Soil Erosion and Sediment Control. Calculations supporting the size of the conduit outlet protection (riprap aprons) provided at the infiltration basin inflow and outlet pipes are also located in Appendix F.

APPENDIX A



MAP FIGURES

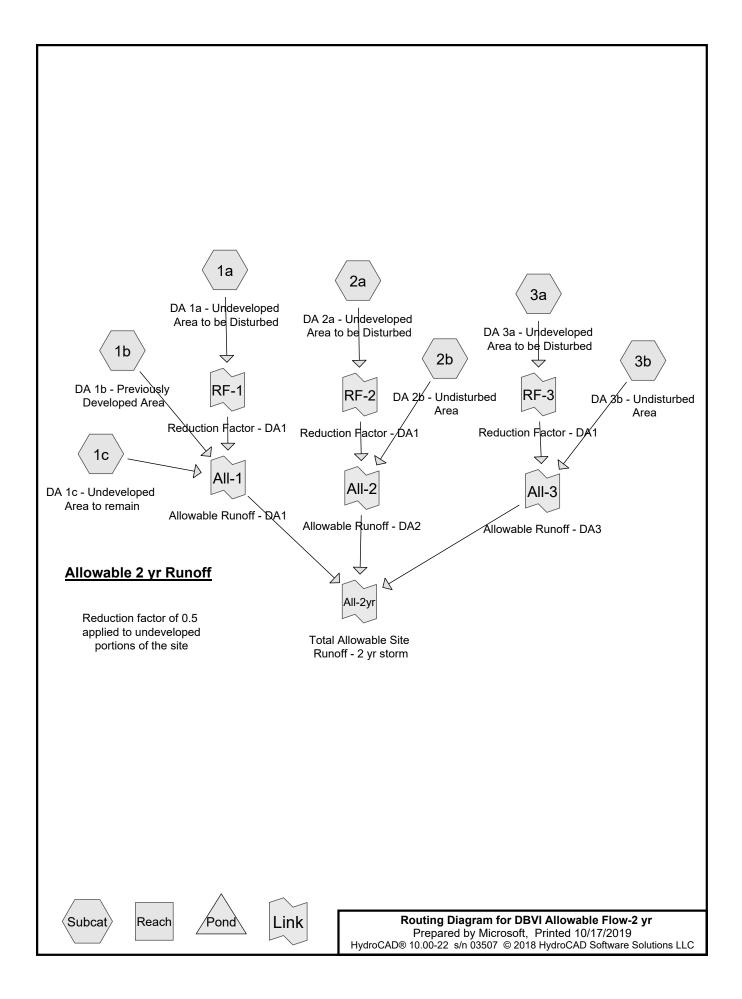
8/30/2019 Page 1 of 2

Conservation Service

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Name	Acres in AOI	Percent of AOI
Lansdowne silt loam, 0 to 2 percent slopes	3.9	24.3%
Penn silt loam, 2 to 6 percent slopes	1.2	7.7%
Rowland silt loam, 0 to 2 percent slopes, frequently flooded	0.1	0.5%
Royce silt loam, 2 to 6 percent slopes	10.8	67.5%
	15.9	100.0%
	Lansdowne silt loam, 0 to 2 percent slopes Penn silt loam, 2 to 6 percent slopes Rowland silt loam, 0 to 2 percent slopes, frequently flooded Royce silt loam, 2 to 6 percent	Lansdowne silt loam, 0 to 2 percent slopes3.9Penn silt loam, 2 to 6 percent slopes1.2Rowland silt loam, 0 to 2 percent slopes, frequently flooded0.1Royce silt loam, 2 to 6 percent slopes10.8


APPENDIX B

STORMWATER RUNOFF CALCULATIONS

- Allowable Conditions HydroCAD models 2, 10 and 100-year storms
- Proposed Condition HydroCAD model 2, 10 and 100-year
- Emergency Spillway HydroCAD models 100-year storm with Outlet Structure blocked

Allowable Conditions <u>HydroCAD Models</u> 2,10 & 100 yr storms

DBVI Allowable Flow-2 yr Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Softwar	DBVI - Proposed House of Worship NOAA 24-hr C 2-Year Rainfall=3.34" Printed 10/17/2019 re Solutions LLC Page 2						
Time span=0.00-96.00 hrs, dt=0.05 hrs, 1921 points Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv. Reach routing by Stor-Ind method - Pond routing by Stor-Ind method							
	rea=3.508 ac 0.00% Impervious Runoff Depth=1.02" I5' Tc=48.7 min CN=72/0 Runoff=1.76 cfs 0.297 af						
	ea=1.324 ac 11.18% Impervious Runoff Depth=1.35")' Tc=17.0 min CN=74/98 Runoff=1.53 cfs 0.149 af						
	rea=2.328 ac 0.00% Impervious Runoff Depth=0.91" '/' Tc=27.0 min CN=70/0 Runoff=1.41 cfs 0.177 af						
	rea=0.879 ac 0.00% Impervious Runoff Depth=1.07" 75' Tc=31.3 min CN=73/0 Runoff=0.60 cfs 0.079 af						
Subcatchment2b: DA 2b - Undisturbed Area Runoff A Flow Length=47	rea=3.823 ac 0.00% Impervious Runoff Depth=1.07" 75' Tc=31.3 min CN=73/0 Runoff=2.62 cfs 0.342 af						
	rea=0.576 ac						
Subcatchment3b: DA 3b - Undisturbed Area Runoff A Flow Length=30	rea=3.522 ac 0.00% Impervious Runoff Depth=1.02" 00' Tc=34.9 min CN=72/0 Runoff=2.13 cfs 0.299 af						
Link All-1: Allowable Runoff - DA1	Inflow=3.11 cfs 0.475 af Primary=3.11 cfs 0.475 af						
Link All-2: Allowable Runoff - DA2	Inflow=2.92 cfs 0.381 af Primary=2.92 cfs 0.381 af						
Link All-2yr: Total Allowable Site Runoff - 2 yr storm	Inflow=8.20 cfs 1.186 af Primary=8.20 cfs 1.186 af						
Link All-3: Allowable Runoff - DA3	Inflow=2.36 cfs 0.330 af Primary=2.36 cfs 0.330 af						
Link RF-1: Reduction Factor - DA1	x 0.50 Inflow=1.76 cfs 0.297 af mary=0.88 cfs 0.149 af Secondary=0.88 cfs 0.149 af						
Link RF-2: Reduction Factor - DA1	x 0.50 Inflow=0.60 cfs 0.079 af mary=0.30 cfs 0.039 af Secondary=0.30 cfs 0.039 af						
Link RF-3: Reduction Factor - DA1	x 0.50 Inflow=0.47 cfs 0.063 af mary=0.23 cfs 0.032 af Secondary=0.23 cfs 0.032 af						
	Volume = 1.406 af Average Runoff Depth = 1.06" vious = 15.812 ac 0.93% Impervious = 0.148 ac						

Summary for Subcatchment 1a: DA 1a - Undeveloped Area to be Disturbed

Runoff = 1.76 cfs @ 12.72 hrs, Volume= 0.297 af, Depth= 1.02"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

Area	(ac) C	N Desc	cription				
2.	2.498 70 Woods, Good, HSG C						
0.	0.837 74 >75% Grass cover, Good, HSG C						
0.	<u>173 9</u>	6 Grav	el surface	, HSG C			
3.	508 7		ghted Aver				
3.	508	100.	00% Pervi	ous Area			
Тс	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
44.2	150	0.0070	0.06		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.34"		
1.7	160	0.0090	1.53		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
2.8	435	0.0250	2.55		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
48.7	745	Total					

Summary for Subcatchment 1b: DA 1b - Previously Developed Area

Runoff = 1.53 cfs @ 12.27 hrs, Volume= 0.149 af, Depth= 1.35"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

	Area	(ac) (CN Des	scription					
*	0.	148	98 Ro	Roof, Imperv. Prkg & Walks, HSG C					
	0.	640	74 >75	5% Grass c	over, Good	, HSG C			
_	0.	536	74 Pas	sture/grassl	and/range,	Good, HSG C			
	1.	324	77 We	ighted Avei	age				
	1.	176	88.	82% Pervio	us Area				
	0.	148	11.	18% Imperv	vious Area				
	Tc	Length			Capacity	Description			
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	15.7	100	0.0150	0.11		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.34"			
	1.3	200	0.0250	2.55		Shallow Concentrated Flow,			
						Unpaved Kv= 16.1 fps			
	17.0	300	Total						

Summary for Subcatchment 1c: DA 1c - Undeveloped Area to remain

Runoff = 1.41 cfs @ 12.42 hrs, Volume= 0.177 af, Depth= 0.91"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

	Area	(ac) C	N Dese	cription		
	2.	328 7	70 Woo	ds, Good,	HSG C	
2.328 100.00% Pervious Area						
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	27.0	150	0.0240	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.34"

Summary for Subcatchment 2a: DA 2a - Undeveloped Area to be Disturbed

Runoff = 0.60 cfs @ 12.47 hrs, Volume= 0.079 af, Depth= 1.07"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

Ar	ea (ac) C	N Desc	cription		
	0.6	664 7	'0 Woo	ds, Good,	HSG C	
	0.1	120 7	'4 >75	% Grass co	over, Good	, HSG C
	0.0)95 9	6 Grav	el surface	, HSG C	
	0.8	379 7	'3 Weig	ghted Aver	age	
	0.8	379	100.	00% Pervi	ous Area	
-	Гс	Length	Slope	Velocity	Capacity	Description
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
28	.8	115	0.0120	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
2	.5	360	0.0225	2.42		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
31	.3	475	Total			

Summary for Subcatchment 2b: DA 2b - Undisturbed Area

Runoff = 2.62 cfs @ 12.47 hrs, Volume= 0.342 af, Depth= 1.07"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

DBVI - Proposed House of Worship NOAA 24-hr C 2-Year Rainfall=3.34" Printed 10/17/2019 ons LLC Page 5

DBVI Allowable Flow-2 yr

Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Software Solutions LLC

_	Area	(ac) C	N Dese	cription		
	1.	236 7	70 Woo	ds, Good,	HSG C	
_	2.	587 7	74 Past	ure/grassla	and/range,	Good, HSG C
	3.	823 7	73 Weig	ghted Aver	age	
	3.	823	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	28.8	115	0.0120	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	2.5	360	0.0225	2.42		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	21.2	175	Total			

31.3 475 Total

Summary for Subcatchment 3a: DA 3a - Undeveloped Area to be Disturbed

Runoff = 0.47 cfs @ 12.52 hrs, Volume= 0.063 af, Depth= 1.31"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

Area	(ac)	CN D	escription				
0.	.422	70 W	/oods, Good,	HSG C			
0.	.154	96 G	ravel surface	e, HSG C			
0.	.576	77 W	/eighted Ave	rage			
0.	.576	1	00.00% Perv	ious Area			
Tc (min)	Length (feet)		,	Capacity (cfs)	Description		
35.7	150	0.012	20 0.07		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 3.34"

Summary for Subcatchment 3b: DA 3b - Undisturbed Area

Runoff = 2.13 cfs @ 12.53 hrs, Volume= 0.299 af, Depth= 1.02"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

 Area (ac)	CN	Description
1.742	70	Woods, Good, HSG C
 1.780	74	Pasture/grassland/range, Good, HSG C
3.522	72	Weighted Average
3.522		100.00% Pervious Area

	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	33.5	150	0.0140	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	1.4	150	0.0120	1.76		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
_	24.0	200	Tatal			

34.9 300 Total

Summary for Link All-1: Allowable Runoff - DA1

Inflow Area	a =	7.160 ac,	2.07% Impervious,	Inflow Depth = 0.80	" for 2-Year event
Inflow	=	3.11 cfs @	12.36 hrs, Volume	= 0.475 af	
Primary	=	3.11 cfs @	12.36 hrs, Volume	= 0.475 af, A	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-2: Allowable Runoff - DA2

Inflow Area =	4.702 ac,	0.00% Impervious, Inf	low Depth = 0.97 "	for 2-Year event
Inflow =	2.92 cfs @	12.47 hrs, Volume=	0.381 af	
Primary =	2.92 cfs @	12.47 hrs, Volume=	0.381 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-2yr: Total Allowable Site Runoff - 2 yr storm

Inflow Area =	=	15.960 ac,	0.93% Impervious,	Inflow Depth = 0.8	39" for 2-Year event
Inflow =		8.20 cfs @	12.47 hrs, Volume	= 1.186 af	
Primary =		8.20 cfs @	12.47 hrs, Volume	= 1.186 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-3: Allowable Runoff - DA3

Inflow Area =	4.098 ac,	0.00% Impervious, Inflow D	Depth = 0.97" for 2-Year event	
Inflow =	2.36 cfs @	12.52 hrs, Volume=	0.330 af	
Primary =	2.36 cfs @	12.52 hrs, Volume=	0.330 af, Atten= 0%, Lag= 0.0 min	٦

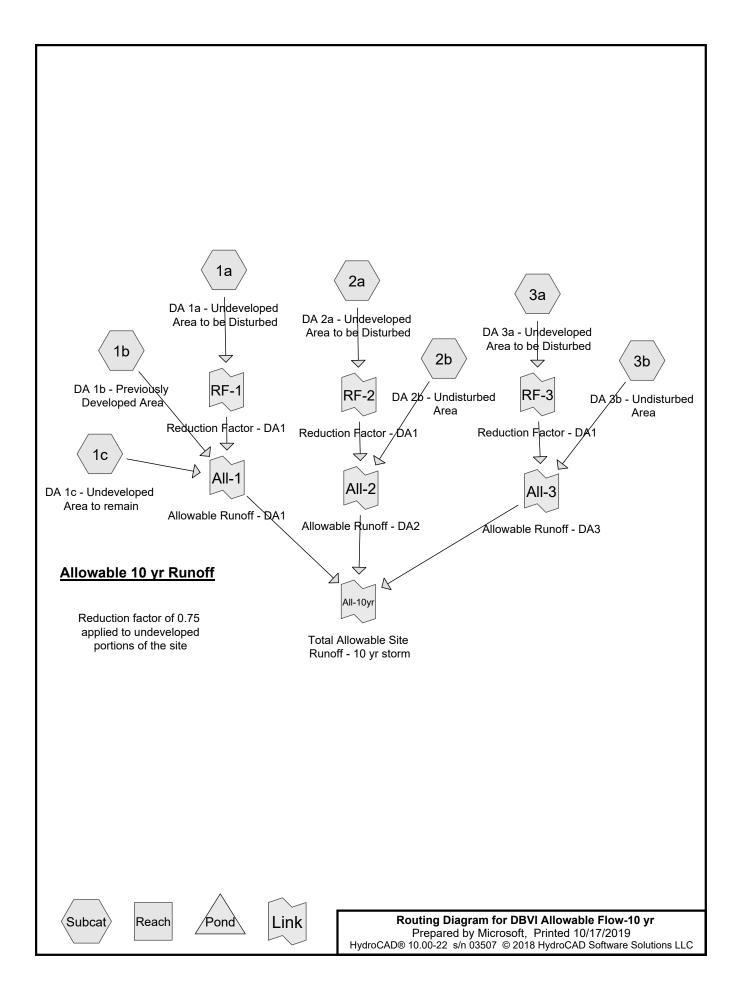
Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-1: Reduction Factor - DA1

Inflow Area =	3.508 ac,	0.00% Impervious, Inflow D	epth = 1.02" for 2-Year event
Inflow =	1.76 cfs @	12.72 hrs, Volume=	0.297 af
Primary =	0.88 cfs @	12.72 hrs, Volume=	0.149 af, Atten= 50%, Lag= 0.0 min
Secondary =	0.88 cfs @	12.72 hrs, Volume=	0.149 af

Primary outflow = Inflow x 0.50, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-2: Reduction Factor - DA1


Inflow Area =	0.879 ac,	0.00% Impervious, Inflow De	epth = 1.07" for 2-Year event
Inflow =	0.60 cfs @	12.47 hrs, Volume=	0.079 af
Primary =	0.30 cfs @	12.47 hrs, Volume=	0.039 af, Atten= 50%, Lag= 0.0 min
Secondary =	0.30 cfs @	12.47 hrs, Volume=	0.039 af

Primary outflow = Inflow x 0.50, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-3: Reduction Factor - DA1

Inflow Area =	0.576 ac,	0.00% Impervious, Inflow De	epth = 1.31" for 2-Year event
Inflow =	0.47 cfs @	12.52 hrs, Volume=	0.063 af
Primary =	0.23 cfs @	12.52 hrs, Volume=	0.032 af, Atten= 50%, Lag= 0.0 min
Secondary =	0.23 cfs @	12.52 hrs, Volume=	0.032 af

Primary outflow = Inflow x 0.50, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

DBVI Allowable Flow-10 yr Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Soft	DBVI - Proposed House of Worship NOAA 24-hr C 10-Year Rainfall=5.01" Printed 10/17/2019 ware Solutions LLC Page 2
Time span=0.00-96.00 hrs Runoff by SCS TR-20 method, I Reach routing by Stor-Ind method	JH=SCS, Split Pervious/Imperv.
	f Area=3.508 ac 0.00% Impervious Runoff Depth=2.21" =745' Tc=48.7 min CN=72/0 Runoff=4.06 cfs 0.645 af
	Area=1.324 ac 11.18% Impervious Runoff Depth=2.64" 300' Tc=17.0 min CN=74/98 Runoff=3.08 cfs 0.291 af
	f Area=2.328 ac 0.00% Impervious Runoff Depth=2.04" 240 '/' Tc=27.0 min CN=70/0 Runoff=3.41 cfs 0.396 af
	f Area=0.879 ac
Subcatchment 2b: DA 2b - Undisturbed Area Runo Flow Length	f Area=3.823 ac 0.00% Impervious Runoff Depth=2.29" =475' Tc=31.3 min CN=73/0 Runoff=5.86 cfs 0.729 af
	f Area=0.576 ac 0.00% Impervious Runoff Depth=2.63" I20 '/' Tc=35.7 min CN=77/0 Runoff=0.96 cfs 0.126 af
Subcatchment 3b: DA 3b - Undisturbed Area Runo Flow Length	f Area=3.522 ac 0.00% Impervious Runoff Depth=2.21" =300' Tc=34.9 min CN=72/0 Runoff=4.89 cfs 0.647 af
Link All-1: Allowable Runoff - DA1	Inflow=7.76 cfs 1.171 af Primary=7.76 cfs 1.171 af
Link All-10yr: Total Allowable Site Runoff - 10 yr st	orm Inflow=19.99 cfs 2.768 af Primary=19.99 cfs 2.768 af
Link All-2: Allowable Runoff - DA2	Inflow=6.87 cfs 0.855 af Primary=6.87 cfs 0.855 af
Link All-3: Allowable Runoff - DA3	Inflow=5.61 cfs 0.742 af Primary=5.61 cfs 0.742 af
Link RF-1: Reduction Factor - DA1	x 0.75 Inflow=4.06 cfs 0.645 af Primary=3.04 cfs 0.484 af Secondary=1.01 cfs 0.161 af
Link RF-2: Reduction Factor - DA1	x 0.75 Inflow=1.35 cfs 0.168 af Primary=1.01 cfs 0.126 af Secondary=0.34 cfs 0.042 af
Link RF-3: Reduction Factor - DA1	x 0.75 Inflow=0.96 cfs 0.126 af Primary=0.72 cfs 0.095 af Secondary=0.24 cfs 0.032 af
	ff Volume = 3.003 af Average Runoff Depth = 2.26"

99.07% Pervious = 15.812 ac 0.93% Impervious = 0.148 ac

Summary for Subcatchment 1a: DA 1a - Undeveloped Area to be Disturbed

Runoff = 4.06 cfs @ 12.70 hrs, Volume= 0.645 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

Area	(ac) C	N Desc	cription		
2.	498 7	'0 Woo	ds, Good,	HSG C	
0.	837 7	'4 >75%	% Grass co	over, Good	, HSG C
0.	173 9	6 Grav	el surface	, HSG C	
3.	508 7	2 Weig	phted Aver	age	
3.	508	100.	00% Pervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
44.2	150	0.0070	0.06		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.34"
1.7	160	0.0090	1.53		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
2.8	435	0.0250	2.55		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
48.7	745	Total			

Summary for Subcatchment 1b: DA 1b - Previously Developed Area

Runoff = 3.08 cfs @ 12.26 hrs, Volume= 0.291 af, Depth= 2.64"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

	Area	(ac)	CN E	Desc	ription		
*	* 0.148 98 Roof, Imperv. Prkg & Walks, HSG C						
	0.	640	74 >	•75%	6 Grass co	over, Good	, HSG C
_	0.	536	74 F	Past	ure/grassla	and/range,	Good, HSG C
1.324 77 Weighted Average							
	1.	176	8	8.8	2% Pervio	us Area	
0.148 11.18% Impervious Area						/ious Area	
	Tc	Length			Velocity	Capacity	Description
	(min)	(feet)	(ft	/ft)	(ft/sec)	(cfs)	
	15.7	100	0.01	50	0.11		Sheet Flow,
							Grass: Dense n= 0.240 P2= 3.34"
	1.3	200	0.02	50	2.55		Shallow Concentrated Flow,
_							Unpaved Kv= 16.1 fps
	17.0	300	Tota				

Summary for Subcatchment 1c: DA 1c - Undeveloped Area to remain

Runoff = 3.41 cfs @ 12.40 hrs, Volume= 0.396 af, Depth= 2.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

Area	(ac) C	N Dese	cription		
2.	.328 7	70 Woo	ds, Good,	HSG C	
2.	.328	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
27.0	150	0.0240	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.34"

Summary for Subcatchment 2a: DA 2a - Undeveloped Area to be Disturbed

Runoff = 1.35 cfs @ 12.45 hrs, Volume= 0.168 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

Ar	ea (ac) C	N Desc	cription		
	0.6	664 7	'0 Woo	ds, Good,	HSG C	
	0.1	120 7	'4 >75	% Grass co	over, Good	, HSG C
	0.0)95 9	6 Grav	el surface	, HSG C	
	0.8	379 7	'3 Weig	ghted Aver	age	
	0.8	379	100.	00% Pervi	ous Area	
-	Гс	Length	Slope	Velocity	Capacity	Description
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
28	.8	115	0.0120	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
2	.5	360	0.0225	2.42		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
31	.3	475	Total			

Summary for Subcatchment 2b: DA 2b - Undisturbed Area

Runoff = 5.86 cfs @ 12.45 hrs, Volume= 0.729 af, Depth= 2.29"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

DBVI - Proposed House of Worship NOAA 24-hr C 10-Year Rainfall=5.01" Printed 10/17/2019 lutions LLC Page 5

DBVI Allowable Flow-10 yr

Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Software Solutions LLC

_	Area	(ac) C	N Dese	cription				
1.236 70			70 Woo	ds, Good,	HSG C			
_	2.	587 7	74 Past	ure/grassl	and/range,	Good, HSG C		
	3.823 73 Weighted Average							
	3.	823	100.	00% Pervi	ous Area			
_	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
	28.8	115	0.0120	0.07		Sheet Flow,		
_	2.5	360	0.0225	2.42		Woods: Light underbrush n= 0.400 P2= 3.34" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps		
	21.2	175	Total					

31.3 475 Total

Summary for Subcatchment 3a: DA 3a - Undeveloped Area to be Disturbed

Runoff = 0.96 cfs @ 12.51 hrs, Volume= 0.126 af, Depth= 2.63"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

Area	(ac) (CN De	scription				
0	.422	70 Wo	ods, Good,	HSG C			
0	.154	96 Gra	avel surface	, HSG C			
0	.576	77 We	ighted Ave	rage			
0	.576	10	0.00% Pervi	ious Area			
Tc (min)	Length (feet)		,	Capacity (cfs)	Description		
35.7	150	0.0120	0.07		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 3.34"

Summary for Subcatchment 3b: DA 3b - Undisturbed Area

Runoff = 4.89 cfs @ 12.50 hrs, Volume= 0.647 af, Depth= 2.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

Area (ac)	CN	Description
1.742	70	Woods, Good, HSG C
1.780	74	Pasture/grassland/range, Good, HSG C
3.522	72	Weighted Average
3.522		100.00% Pervious Area

	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·
	33.5	150	0.0140	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	1.4	150	0.0120	1.76		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	24.0	200	Total			

34.9 300 Total

Summary for Link All-1: Allowable Runoff - DA1

Inflow Area =	= 7.160 a	c, 2.07% Impervious,	Inflow Depth = 1.9	6" for 10-Year event
Inflow =	7.76 cfs	@ 12.37 hrs, Volume	= 1.171 af	
Primary =	7.76 cfs	@ 12.37 hrs, Volume	= 1.171 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-10yr: Total Allowable Site Runoff - 10 yr storm

Inflow Area =	15.960 ac,	0.93% Impervious, Inflow D	Depth = 2.08"	for 10-Year event
Inflow =	19.99 cfs @	12.45 hrs, Volume=	2.768 af	
Primary =	19.99 cfs @	12.45 hrs, Volume=	2.768 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-2: Allowable Runoff - DA2

Inflow Area =	=	4.702 ac,	0.00% Impervious,	Inflow Depth = 2.1	18" for 10-Year event
Inflow =	:	6.87 cfs @	12.45 hrs, Volume	= 0.855 af	
Primary =	:	6.87 cfs @	12.45 hrs, Volume	= 0.855 af,	Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-3: Allowable Runoff - DA3

Inflow Area	=	4.098 ac,	0.00% Impervious, In	nflow Depth = 2.17"	for 10-Year event
Inflow	=	5.61 cfs @	12.50 hrs, Volume=	0.742 af	
Primary	=	5.61 cfs @	12.50 hrs, Volume=	0.742 af, Atte	en= 0%, Lag= 0.0 min

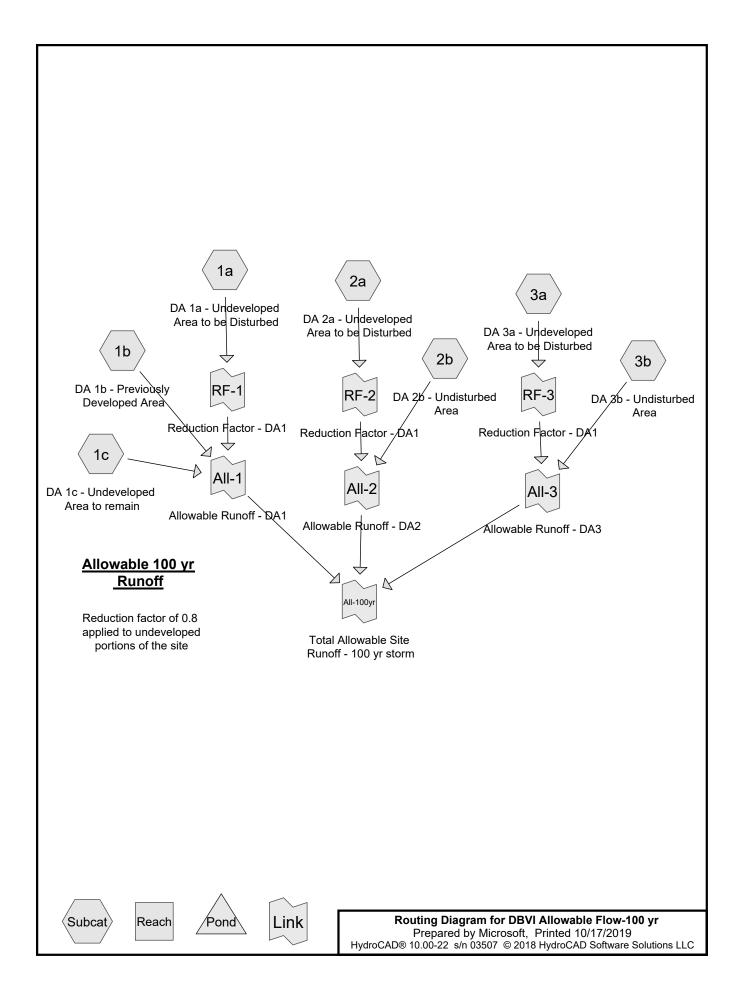
Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-1: Reduction Factor - DA1

Inflow Area =	3.508 ac,	0.00% Impervious, Inflow E	Depth = 2.21" for 10-Year event
Inflow =	4.06 cfs @	12.70 hrs, Volume=	0.645 af
Primary =	3.04 cfs @	12.70 hrs, Volume=	0.484 af, Atten= 25%, Lag= 0.0 min
Secondary =	1.01 cfs @	12.70 hrs, Volume=	0.161 af

Primary outflow = Inflow x 0.75, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-2: Reduction Factor - DA1


Inflow Area =	0.879 ac,	0.00% Impervious, Inflow D	epth = 2.29" for 10-Year event
Inflow =	1.35 cfs @	12.45 hrs, Volume=	0.168 af
Primary =	1.01 cfs @	12.45 hrs, Volume=	0.126 af, Atten= 25%, Lag= 0.0 min
Secondary =	0.34 cfs @	12.45 hrs, Volume=	0.042 af

Primary outflow = Inflow x 0.75, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-3: Reduction Factor - DA1

Inflow Area =	0.576 ac,	0.00% Impervious, Inflow D	epth = 2.63" for 10-Year event
Inflow =	0.96 cfs @	12.51 hrs, Volume=	0.126 af
Primary =	0.72 cfs @	12.51 hrs, Volume=	0.095 af, Atten= 25%, Lag= 0.0 min
Secondary =	0.24 cfs @	12.51 hrs, Volume=	0.032 af

Primary outflow = Inflow x 0.75, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

DBVI Allowable Flow-100 yr Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Softwar	DBVI - Proposed House of Worship NOAA 24-hr C 100-Year Rainfall=8.21" Printed 10/17/2019 e Solutions LLC Page 2
Time span=0.00-96.00 hrs, d Runoff by SCS TR-20 method, UH Reach routing by Stor-Ind method - F	SCS, Split Pervious/Imperv.
	ea=3.508 ac 0.00% Impervious Runoff Depth=4.88" 5' Tc=48.7 min CN=72/0 Runoff=9.10 cfs 1.426 af
	a=1.324 ac 11.18% Impervious Runoff Depth=5.43" ' Tc=17.0 min CN=74/98 Runoff=6.35 cfs 0.599 af
	ea=2.328 ac 0.00% Impervious Runoff Depth=4.65" '/' Tc=27.0 min CN=70/0 Runoff=7.89 cfs 0.901 af
	ea=0.879 ac 0.00% Impervious Runoff Depth=5.00" 5' Tc=31.3 min CN=73/0 Runoff=2.97 cfs 0.366 af
Subcatchment2b: DA 2b - Undisturbed Area Runoff Ar Flow Length=475	ea=3.823 ac 0.00% Impervious Runoff Depth=5.00" ' Tc=31.3 min CN=73/0 Runoff=12.91 cfs 1.592 af
	ea=0.576 ac 0.00% Impervious Runoff Depth=5.47" '/' Tc=35.7 min CN=77/0 Runoff=1.98 cfs 0.262 af
Subcatchment3b: DA 3b - Undisturbed Area Runoff Ar Flow Length=300	ea=3.522 ac 0.00% Impervious Runoff Depth=4.88" ' Tc=34.9 min CN=72/0 Runoff=10.97 cfs 1.432 af
Link All-1: Allowable Runoff - DA1	Inflow=17.79 cfs 2.642 af Primary=17.79 cfs 2.642 af
Link All-100yr: Total Allowable Site Runoff - 100 yr sto	rm Inflow=45.12 cfs 6.168 af Primary=45.12 cfs 6.168 af
Link All-2: Allowable Runoff - DA2	Inflow=15.29 cfs 1.885 af Primary=15.29 cfs 1.885 af
Link All-3: Allowable Runoff - DA3	Inflow=12.55 cfs 1.642 af Primary=12.55 cfs 1.642 af
Link RF-1: Reduction Factor - DA1	x 0.80 Inflow=9.10 cfs 1.426 af nary=7.28 cfs 1.141 af Secondary=1.82 cfs 0.285 af
Link RF-2: Reduction Factor - DA1	x 0.80 Inflow=2.97 cfs 0.366 af nary=2.37 cfs 0.293 af Secondary=0.59 cfs 0.073 af
Link RF-3: Reduction Factor - DA1	x 0.80 Inflow=1.98 cfs 0.262 af nary=1.58 cfs 0.210 af Secondary=0.40 cfs 0.052 af
Total Runoff Area = 15.960 ac Runoff \	/olume = 6.579 af Average Runoff Depth = 4.95"

99.07% Pervious = 15.812 ac 0.93% Impervious = 0.148 ac

Summary for Subcatchment 1a: DA 1a - Undeveloped Area to be Disturbed

Runoff = 9.10 cfs @ 12.67 hrs, Volume= 1.426 af, Depth= 4.88"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

Area	(ac) C	N Desc	cription						
2.	498 7	'0 Woo	ds, Good,	HSG C					
0.	837 7	'4 >75%	% Grass co	over, Good	, HSG C				
0.	173 9	6 Grav	el surface	, HSG C					
3.	3.508 72 Weighted Average								
3.	508	100.	00% Pervi	ous Area					
Тс	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
44.2	150	0.0070	0.06		Sheet Flow,				
					Woods: Light underbrush n= 0.400 P2= 3.34"				
1.7	160	0.0090	1.53		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
2.8	435	0.0250	2.55		Shallow Concentrated Flow,				
					Unpaved Kv= 16.1 fps				
48.7	745	Total							

Summary for Subcatchment 1b: DA 1b - Previously Developed Area

Runoff = 6.35 cfs @ 12.26 hrs, Volume= 0.599 af, Depth= 5.43"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

	Area	(ac)	CN	Desc	ription		
*	0.	148	98	Roof	, Imperv. I	Prkg & Wal	ks, HSG C
	0.	640	74	>75%	6 Grass co	over, Good	, HSG C
_	0.	536	74	Past	ure/grassla	and/range,	Good, HSG C
	1.	324	77	Weig	hted Aver	age	
	1.	176		88.8	2% Pervio	us Area	
	0.	148		11.18	8% Imperv	vious Area	
	Тс	Length		Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	15.7	100	0.0	0150	0.11		Sheet Flow,
							Grass: Dense n= 0.240 P2= 3.34"
	1.3	200	0.0	0250	2.55		Shallow Concentrated Flow,
_							Unpaved Kv= 16.1 fps
	17.0	300) To	otal			

Summary for Subcatchment 1c: DA 1c - Undeveloped Area to remain

Runoff = 7.89 cfs @ 12.39 hrs, Volume= 0.901 af, Depth= 4.65"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

 Area	(ac) C	N Dese	cription		
 2.	328 7	70 Woo	ds, Good,	HSG C	
2.	328	100.	00% Pervi	ous Area	
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
 27.0	150	0.0240	0.09		Sheet Flow, Woods: Light underbrush n= 0.400 P2= 3.34"

Summary for Subcatchment 2a: DA 2a - Undeveloped Area to be Disturbed

Runoff = 2.97 cfs @ 12.43 hrs, Volume= 0.366 af, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

_	Area	(ac) C	N Desc	cription		
	0.	664 7	'0 Woo	ds, Good,	HSG C	
	0.	120 7	'4 >75	% Grass co	over, Good	, HSG C
	0.	095 9	6 Grav	el surface	, HSG C	
	0.	879 7	'3 Weig	ghted Aver	age	
	0.	879	100.	00% Pervi	ous Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	28.8	115	0.0120	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	2.5	360	0.0225	2.42		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
_	31.3	475	Total			

Summary for Subcatchment 2b: DA 2b - Undisturbed Area

Runoff = 12.91 cfs @ 12.43 hrs, Volume= 1.592 af, Depth= 5.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

DBVI - Proposed House of Worship NOAA 24-hr C 100-Year Rainfall=8.21" Printed 10/17/2019 Solutions LLC Page 5

DBVI Allowable Flow-100 yr

Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Software Solutions LLC

_	Area	(ac) C	N Dese	cription			
	1.	236 7	70 Woo	ds, Good,	HSG C		
_	2.	<u>587 7</u>	74 Past	ure/grassla	and/range,	Good, HSG C	
	3.823 73 Weighted Average						
	3.	823	100.	00% Pervi	ous Area		
	_						
	ŢĊ	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	28.8	115	0.0120	0.07		Sheet Flow,	
						Woods: Light underbrush n= 0.400 P2= 3.34"	
	2.5	360	0.0225	2.42		Shallow Concentrated Flow,	
_						Unpaved Kv= 16.1 fps	
	21 2	175	Total				

31.3 475 Total

Summary for Subcatchment 3a: DA 3a - Undeveloped Area to be Disturbed

Runoff = 1.98 cfs @ 12.49 hrs, Volume= 0.262 af, Depth= 5.47"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

Area	(ac) C	N Des	cription				
0.	.422	70 Woo	ds, Good,	HSG C			
0	.154 9	96 Grav	vel surface	, HSG C			
0.	.576	77 Wei	ghted Aver	age			
0.	.576	100.	00% Pervi	ous Area			
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description		
35.7	150	0.0120	0.07		Sheet Flow, Woods: Light underbrush	n= 0.400	P2= 3.34"

Summary for Subcatchment 3b: DA 3b - Undisturbed Area

Runoff = 10.97 cfs @ 12.48 hrs, Volume= 1.432 af, Depth= 4.88"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

Area (ad	c) CN	Description
1.74	2 70	Woods, Good, HSG C
1.78	0 74	Pasture/grassland/range, Good, HSG C
3.52	2 72	Weighted Average
3.52	2	100.00% Pervious Area

	DBVI - Proposed House of Worship
DBVI Allowable Flow-100 yr	NOAA 24-hr C 100-Year Rainfall=8.21"
Prepared by Microsoft	Printed 10/17/2019
HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Software	e Solutions LLC Page 6
To Longth Slong Velocity Canacity Descrip	tion

	IC	Length	Siope	velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	33.5	150	0.0140	0.07		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	1.4	150	0.0120	1.76		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	34.9	300	Total			

Summary for Link All-1: Allowable Runoff - DA1

Inflow Are	a =	7.160 ac,	2.07% Impervious, Infle	ow Depth = 4.43 "	for 100-Year event
Inflow	=	17.79 cfs @	12.37 hrs, Volume=	2.642 af	
Primary	=	17.79 cfs @	12.37 hrs, Volume=	2.642 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-100yr: Total Allowable Site Runoff - 100 yr storm

Inflow Area	a =	15.960 ac,	0.93% Impervious, In	flow Depth = 4.64"	for 100-Year event
Inflow	=	45.12 cfs @	12.44 hrs, Volume=	6.168 af	
Primary	=	45.12 cfs @	12.44 hrs, Volume=	6.168 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-2: Allowable Runoff - DA2

Inflow Area =	4.702 ac,	0.00% Impervious,	Inflow Depth = 4.81"	for 100-Year event
Inflow =	15.29 cfs @	12.43 hrs, Volume	= 1.885 af	
Primary =	15.29 cfs @	12.43 hrs, Volume=	= 1.885 af, At	tten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link All-3: Allowable Runoff - DA3

Inflow Area	a =	4.098 ac,	0.00% Impervious,	Inflow Depth = 4.81"	for 100-Year event
Inflow	=	12.55 cfs @	12.48 hrs, Volume=	= 1.642 af	
Primary	=	12.55 cfs @	12.48 hrs, Volume=	= 1.642 af, Atte	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

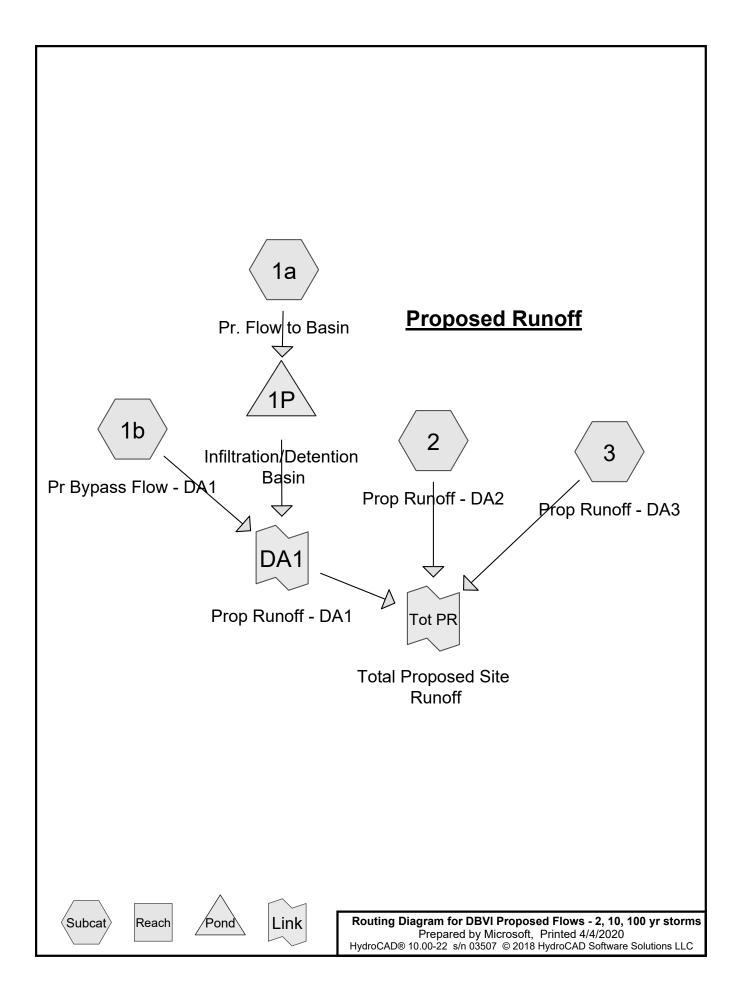
Summary for Link RF-1: Reduction Factor - DA1

Inflow Area =	3.508 ac,	0.00% Impervious, Inflow	Depth = 4.88" for 100-Year event	
Inflow =	9.10 cfs @	12.67 hrs, Volume=	1.426 af	
Primary =	7.28 cfs @	12.67 hrs, Volume=	1.141 af, Atten= 20%, Lag= 0.0 mi	in
Secondary =	1.82 cfs @	12.67 hrs, Volume=	0.285 af	

Primary outflow = Inflow x 0.80, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-2: Reduction Factor - DA1

Inflow Area =	0.879 ac,	0.00% Impervious, Inflow D	epth = 5.00" for 100-Year event
Inflow =	2.97 cfs @	12.43 hrs, Volume=	0.366 af
Primary =	2.37 cfs @	12.43 hrs, Volume=	0.293 af, Atten= 20%, Lag= 0.0 min
Secondary =	0.59 cfs @	12.43 hrs, Volume=	0.073 af


Primary outflow = Inflow x 0.80, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Summary for Link RF-3: Reduction Factor - DA1

Inflow Area =	0.576 ac,	0.00% Impervious, Inflow D	epth = 5.47"	for 100-Year event
Inflow =	1.98 cfs @	12.49 hrs, Volume=	0.262 af	
Primary =	1.58 cfs @	12.49 hrs, Volume=	0.210 af, Atte	en= 20%, Lag= 0.0 min
Secondary =	0.40 cfs @	12.49 hrs, Volume=	0.052 af	

Primary outflow = Inflow x 0.80, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs

Proposed Conditions <u>HydroCAD Model</u> 2,10 & 100 yr storms

Summary for Subcatchment 1a: Pr. Flow to Basin

Runoff = 6.59 cfs @ 12.24 hrs, Volume= 0.661 af, Depth= 2.48"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

_	Area	(ac) C	N Dese	cription					
	0.198 70 Woods, Good, HSG C								
	0.795 74 >75% Grass cover, Good, HSG C								
4									
-	3.	202 9	90 Weid	ghted Aver	ade				
		993		, 1% Pervio	0				
	2.	209	68.9	9% Imperv	/ious Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	10.1	20	0.0050	0.03		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.34"			
	5.1	20	0.0100	0.07		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.34"			
	0.8	100	0.0100	2.03		Shallow Concentrated Flow,			
						Paved Kv= 20.3 fps			
	16.0	140	Total						

16.0 140 Total

Summary for Subcatchment 1b: Pr Bypass Flow - DA1

Runoff = 3.02 cfs @ 12.64 hrs, Volume= 0.480 af, Depth= 1.22"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

_	Area	(ac)	CN	Desc	ription		
	2.	129	70				
2.129 70 Woods, Good, HSG C 2.148 74 >75% Grass cover, Good, HSG C							, HSG C
	0.	097	96	Grav	el surface	, HSG C	
*	0.	343	98	Impe	rvious Su	rfaces, HSC	GC
	4.	717	74	Weig	hted Aver	age	
	4.	374		92.7	3% Pervio	us Area	
	0.343 7.27% Impervious Area					ous Area	
					_		
	Tc	Length		lope	Velocity	Capacity	Description
_	(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
	24.3	60	0.0	050	0.04		Sheet Flow,
							Woods: Light underbrush n= 0.400 P2= 3.34"
	16.9	90	0.0)100	0.09		Sheet Flow,
							Grass: Dense n= 0.240 P2= 3.34"
	2.8	430	0.0)250	2.55		Shallow Concentrated Flow,
							Unpaved Kv= 16.1 fps
	44.0	580	To	tal			

Summary for Subcatchment 2: Prop Runoff - DA2

Runoff = 2.80 cfs @ 12.51 hrs, Volume= 0.393 af, Depth= 1.12"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

_	Area	(ac) C	N Dese	cription					
	1.146 70 Woods, Good, HSG C								
	2.	661 7	74 >759	% Grass co	over, Good	, HSG C			
	0.	205 9	98 Pave	ed parking	, HSG C				
_	0.	<u>200 6</u>	<u>35 Brus</u>	h, Good, F	ISG C				
	4.	212 7	74 Weig	ghted Aver	age				
		007		3% Pervio					
	0.	205	4.87	% Impervi	ous Area				
	Тс	Length	Slope	Velocity	Capacity	Description			
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
	23.7	90	0.0120	0.06		Sheet Flow,			
						Woods: Light underbrush n= 0.400 P2= 3.34"			
	8.5	60	0.0250	0.12		Sheet Flow,			
						Grass: Dense n= 0.240 P2= 3.34"			
	2.3	335	0.0225	2.42		Shallow Concentrated Flow,			
_						Unpaved Kv= 16.1 fps			
	315		Total						

34.5 485 Total

Summary for Subcatchment 3: Prop Runoff - DA3

Runoff = 2.21 cfs @ 12.53 hrs, Volume= 0.320 af, Depth= 1.00"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 2-Year Rainfall=3.34"

Area	(ac) C	N Des	cription				
1.	1.934 70 Woods, Good, HSG C						
1.	164	74 >75	% Grass co	over, Good	, HSG C		
0.	161	98 Pave	ed parking	, HSG C			
0.	570	65 Brus	sh, Good, H	ISG C			
3.	829	72 Wei	ghted Aver	age			
3.	668	95.8	0% Pervio	us Area			
0.	.161	4.20	% Impervi	ous Area			
-		0		0			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
33.5	150	0.0140	0.07		Sheet Flow,		
					Woods: Light underbrush n= 0.400 P2= 3.34"		
1.4	150	0.0120	1.76		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
34.9	300	Total					

Summary for Pond 1P: Infiltration/Detention Basin

Inflow Area =	3.202 ac, 68.99% Impervious, Inflow I	Depth = 2.48" for 2-Year event
Inflow =	6.59 cfs @ 12.24 hrs, Volume=	0.661 af
Outflow =	0.23 cfs @16.20 hrs, Volume=	0.285 af, Atten= 96%, Lag= 237.4 min
Primary =	0.23 cfs @ 16.20 hrs, Volume=	0.285 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Peak Elev= 106.47' @ 16.20 hrs Surf.Area= 12,569 sf Storage= 22,054 cf

Plug-Flow detention time= 788.4 min calculated for 0.285 af (43% of inflow) Center-of-Mass det. time= 646.6 min (1,427.2 - 780.6)

Volume	Inve	rt Avail.Sto	orage Storage	e Description	
#1	104.50)' 75,3	78 cf Custon	n Stage Data (P	rismatic)Listed below (Recalc)
Elevatio		Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
104.5		9,429	0	0	
105.0	00	10,650	5,020	5,020	
106.0	00	11,936	11,293	16,313	
107.0	00	13,287	12,612	28,924	
108.0	00	14,704	13,996	42,920	
109.0	00	16,185	15,445	58,364	
110.0		17,842	17,014	75,378	
		,	,	,	
Device	Routing	Invert	Outlet Device	es	
#1	Device 4	106.00'	4.0" Vert. Or	rifice/Grate C=	0.600
#2	Device 4	108.00'			ctangular Weir 2 End Contraction(s)
#3	Primary	108.50'			road-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60
					70 2.69 2.68 2.69 2.67 2.64
#4	Primary	104.00'	15.0" Round		10 2.00 2.00 2.00 2.01 2.01
π -	Timary	104.00			headwall, Ke= 0.500
					103.68' S= 0.0080 '/' Cc= 0.900
			11-0.013, FI	ow Area= 1.23 s	I
Duline e					Diashanna)
				W=106.47' (Fre	e Discharge)
			r Weir (Contro		

-4=Culvert (Passes 0.23 cfs of 7.83 cfs potential flow)

-1=Orifice/Grate (Orifice Controls 0.23 cfs @ 2.65 fps)

-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DA1: Prop Runoff - DA1

Inflow Area	a =	7.919 ac, 32.23% Ir	npervious, Inflow D	Depth > 1.16"	for 2-Year event
Inflow	=	3.06 cfs @ 12.66 hi	rs, Volume=	0.765 af	
Primary	=	3.06 cfs @ 12.66 hi	rs, Volume=	0.765 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Summary for Link Tot PR: Total Proposed Site Runoff

Inflow Are	a =	15.960 ac, 18.28%	Impervious, Inflow E	Depth = $1.11''$	for 2-Year event
Inflow	=	7.91 cfs @ 12.56	hrs, Volume=	1.478 af	
Primary	=	7.91 cfs @ 12.56	hrs, Volume=	1.478 af, Att	en= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 1a: Pr. Flow to Basin

10.63 cfs @ 12.24 hrs, Volume= 1.068 af, Depth= 4.00" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

_	Area	(ac) C	N Des	cription				
0.198 70 Woods, Good, HSG C								
	0.795 74 >75% Grass cover, Good, HSG C							
*								
_	3.	202	90 Weid	phted Aver	age			
	0.	993	31.0	1% Pervio	us Area			
	2.	209	68.9	9% Imperv	vious Area			
	Тс	Length	Slope	Velocity	Capacity	Description		
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·		
	10.1	20	0.0050	0.03		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.34"		
	5.1	20	0.0100	0.07		Sheet Flow,		
						Grass: Dense n= 0.240 P2= 3.34"		
	0.8	100	0.0100	2.03		Shallow Concentrated Flow,		
						Paved Kv= 20.3 fps		
_	16.0	140	Total			·		

Summary for Subcatchment 1b: Pr Bypass Flow - DA1

0.971 af, Depth= 2.47" 6.38 cfs @ 12.62 hrs, Volume= Runoff =

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

	Area	(ac) (CN Des	cription				
	, HSG C							
	0.097 96 Gravel surface, HSG C							
*	0.	343	98 Imp	ervious Su	rfaces, HS0	GC		
	4.	717	74 Wei	ghted Aver	age			
	4.	374	92.7	'3% Pervio	us Area			
	0.	343	7.27	'% Impervi	ous Area			
	Tc	Length		Velocity	Capacity	Description		
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
	24.3	60	0.0050	0.04		Sheet Flow,		
						Woods: Light underbrush n= 0.400 P2= 3.34"		
	16.9	90	0.0100	0.09		Sheet Flow,		
						Grass: Dense n= 0.240 P2= 3.34"		
	2.8	430	0.0250	2.55		Shallow Concentrated Flow,		
_						Unpaved Kv= 16.1 fps		
	44.0	580	Total					

Summary for Subcatchment 2: Prop Runoff - DA2

Runoff = 6.16 cfs @ 12.49 hrs, Volume= 0.818 af, Depth= 2.33"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

_	Area	(ac) C	N Desc	cription		
	1.	146 7	'0 Woo	ds, Good,	HSG C	
	2.	661 7	'4 >75°	% Grass co	over, Good	, HSG C
	0.	205 9	8 Pave	ed parking	, HSG C	
_	0.	<u>200 6</u>	65 Brus	h, Good, ⊦	ISG C	
				ghted Aver		
		007		3% Pervio		
	0.	205	4.87	% Impervi	ous Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
_	23.7	90	0.0120	0.06	× 4	Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	8.5	60	0.0250	0.12		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.34"
	2.3	335	0.0225	2.42		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps

34.5 485 Total

Summary for Subcatchment 3: Prop Runoff - DA3

Runoff = 5.11 cfs @ 12.50 hrs, Volume= 0.689 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 10-Year Rainfall=5.01"

Area	(ac) C	N Des	cription		
1.	934	70 Woo	ds, Good,	HSG C	
1.	164	74 >75	% Grass co	over, Good	, HSG C
0.	161	98 Pave	ed parking	, HSG C	
0.	570	65 Brus	sh, Good, H	ISG C	
3.	829	72 Weig	ghted Aver	age	
3.	668	95.8	0% Pervio	us Area	
0.	161	4.20	% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
33.5	150	0.0140	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.34"
1.4	150	0.0120	1.76		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
34.9	300	Total			

Summary for Pond 1P: Infiltration/Detention Basin

Inflow Area	=	3.202 ac, 68.99% Impervious, Inflow Depth = 4.00" for 10-Year event
Inflow =	=	10.63 cfs @ 12.24 hrs, Volume= 1.068 af
Outflow =	=	0.46 cfs @ 15.09 hrs, Volume= 0.692 af, Atten= 96%, Lag= 171.0 min
Primary =	=	0.46 cfs @ 15.09 hrs, Volume= 0.692 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Peak Elev= 107.37' @ 15.09 hrs Surf.Area= 13,818 sf Storage= 34,001 cf

Plug-Flow detention time= 766.5 min calculated for 0.692 af (65% of inflow) Center-of-Mass det. time= 659.0 min (1,433.8 - 774.8)

Volume	Inve	rt Avail.Sto	orage Sto	orage Descript	ion			
#1	104.5	D' 75,3	78 cf Cu	stom Stage D	Data (Pri	smatic)Listed below (Recalc)		
Elevatio	מר מר	Surf.Area	Inc.Sto	re Cum	.Store			
(fee		(sq-ft)	(cubic-fee		c-feet)			
104.5	1	9,429		0	0			
104.0		10,650	5,02	•	5,020			
105.0		11,936	11,2		16,313			
100.0		13,287	12,6		28,924			
107.0		14,704	13,9		12,920			
109.0		16,185	15,4		58,364			
110.0		17,842			75,378			
		, -	, -		-,			
Device	Routing	Invert	Outlet D	evices				
#1	Device 4	106.00'	4.0" Ver	t. Orifice/Grat	te C=0	.600		
#2	Device 4	108.00'	4.0' long	Sharp-Crest	ed Rect	angular Weir 2 End Contraction(s)		
#3	Primary	108.50'				oad-Crested Rectangular Weir		
	-		Head (fe	et) 0.20 0.40	0.60 0	.80 1.00 1.20 1.40 1.60		
			Coef. (E	nglish) 2.49 2	2.56 2.7	0 2.69 2.68 2.69 2.67 2.64		
#4	Primary	mary 104.00'		15.0" Round Culvert				
		-				eadwall, Ke= 0.500		
						03.68' S= 0.0080 '/' Cc= 0.900		
			n= 0.013	, Flow Area=	1.23 sf			
	o (=)		o					
		Max=0.46 cfs (Discharge)		
⊢_3=Br	oad-Crest	ed Rectangula	r Weir (C	ontrois 0.00 cf	S)			

-4=Culvert (Passes 0.46 cfs of 9.80 cfs potential flow)

-1=Orifice/Grate (Orifice Controls 0.46 cfs @ 5.29 fps)

-2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

Summary for Link DA1: Prop Runoff - DA1

Inflow Are	a =	7.919 ac, 32.23% Impervious, Inflow Depth > 2.52" for 10-Year event	
Inflow	=	6.76 cfs @ 12.63 hrs, Volume= 1.662 af	
Primary	=	6.76 cfs @ 12.63 hrs, Volume= 1.662 af, Atten= 0%, Lag= 0.0 m	in

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Summary for Link Tot PR: Total Proposed Site Runoff

Inflow Area	a =	15.960 ac, 18.28% Impervious, Inflow Dep	th = 2.38" for 10-Year event
Inflow	=	17.72 cfs @ 12.54 hrs, Volume= 3	.169 af
Primary	=	17.72 cfs @ 12.54 hrs, Volume= 3	.169 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Summary for Subcatchment 1a: Pr. Flow to Basin

Runoff = 18.63 cfs @ 12.24 hrs, Volume= 1.881 af, Depth= 7.05"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

	Area	(ac) C	N Dese	cription		
	0.	198	70 Woo	ds, Good,	HSG C	
	0.	795	74 >759	% Grass co	over, Good	, HSG C
*	2.	209 9	98 Root	f, Imperv. I	Prkg & Wal	ks, HSG C
	3.	202 9	90 Weid	phted Aver	ade	
	0.	993		, 1% Pervio	•	
	-	209		9% Imperv		
		200	00.0			
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
_	10.1	20	0.0050	0.03		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	5.1	20	0.0100	0.07		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.34"
	0.8	100	0.0100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	16.0	140	Total			

Summary for Subcatchment 1b: Pr Bypass Flow - DA1

Runoff = 13.62 cfs @ 12.60 hrs, Volume= 2.049

2.049 af, Depth= 5.21"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

	Area	(ac) (CN De	scription						
	2.	129	70 Wo	ods, Good,	HSG C					
	2.148 74 >75% Grass cover, Good, HSG C									
	0.	097		avel surface						
*	0.	343	98 lm	pervious Su	rfaces, HS0	GC				
	4.	717	74 We	ighted Ave	rage					
	4.	374	92.	73% Pervic	us Area					
	0.	343	7.2	7% Impervi	ous Area					
	Tc	Length			Capacity	Description				
((min)	(feet)	(ft/ft) (ft/sec)	(cfs)					
	24.3	60	0.0050	0.04		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.34"				
	16.9	90	0.0100	0.09		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.34"				
	2.8	430	0.0250	2.55		Shallow Concentrated Flow,				
						Unpaved Kv= 16.1 fps				
	44.0	580	Total							

Summary for Subcatchment 2: Prop Runoff - DA2

Runoff = 13.47 cfs @ 12.48 hrs, Volume= 1.765 af, Depth= 5.03"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

_	Area	(ac) C	N Des	cription		
	1.	146 7	70 Woo	ds, Good,	HSG C	
	2.	661 7	74 >75	% Grass co	over, Good	, HSG C
	0.	205 9	98 Pave	ed parking	, HSG C	
_	0.	<u>200 6</u>	65 Brus	sh, Good, F	ISG C	
	4.	212 7		ghted Aver		
	4.	007		3% Pervio		
	0.	205	4.87	% Impervi	ous Area	
	т.	1	01		0	Description
	Tc (min)	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	<u>(ft/ft)</u>	(ft/sec)	(cfs)	
	23.7	90	0.0120	0.06		Sheet Flow,
						Woods: Light underbrush n= 0.400 P2= 3.34"
	8.5	60	0.0250	0.12		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.34"
	2.3	335	0.0225	2.42		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	34 5	485	Total			

34.5 485 Total

Summary for Subcatchment 3: Prop Runoff - DA3

Runoff = 11.59 cfs @ 12.48 hrs, Volume= 1.527 af, Depth= 4.79"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-120.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100-Year Rainfall=8.21"

Area	(ac) C	N Des	cription		
1.	934	70 Woo	ds, Good,	HSG C	
1.	164	74 >75	% Grass co	over, Good	, HSG C
0.	161	98 Pave	ed parking	, HSG C	
0.	570	65 Brus	h, Good, H	ISG C	
3.	829	72 Weig	ghted Aver	age	
3.	668	95.8	0% Pervio	us Area	
0.	161	4.20	% Impervi	ous Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
33.5	150	0.0140	0.07		Sheet Flow,
					Woods: Light underbrush n= 0.400 P2= 3.34"
1.4	150	0.0120	1.76		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
34.9	300	Total			

Summary for Pond 1P: Infiltration/Detention Basin

Inflow Are	a =	3.202 ac, 68.99% Impervious, Inflow Depth = 7.05" for 100-Year event
Inflow	=	18.63 cfs @ 12.24 hrs, Volume= 1.881 af
Outflow	=	4.33 cfs @ 12.75 hrs, Volume= 1.504 af, Atten= 77%, Lag= 30.9 min
Primary	=	4.33 cfs @ 12.75 hrs, Volume= 1.504 af

Routing by Stor-Ind method, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs Peak Elev= 108.44' @ 12.75 hrs Surf.Area= 15,351 sf Storage= 49,488 cf

Plug-Flow detention time= 631.1 min calculated for 1.504 af (80% of inflow) Center-of-Mass det. time= 549.6 min (1,317.7 - 768.1)

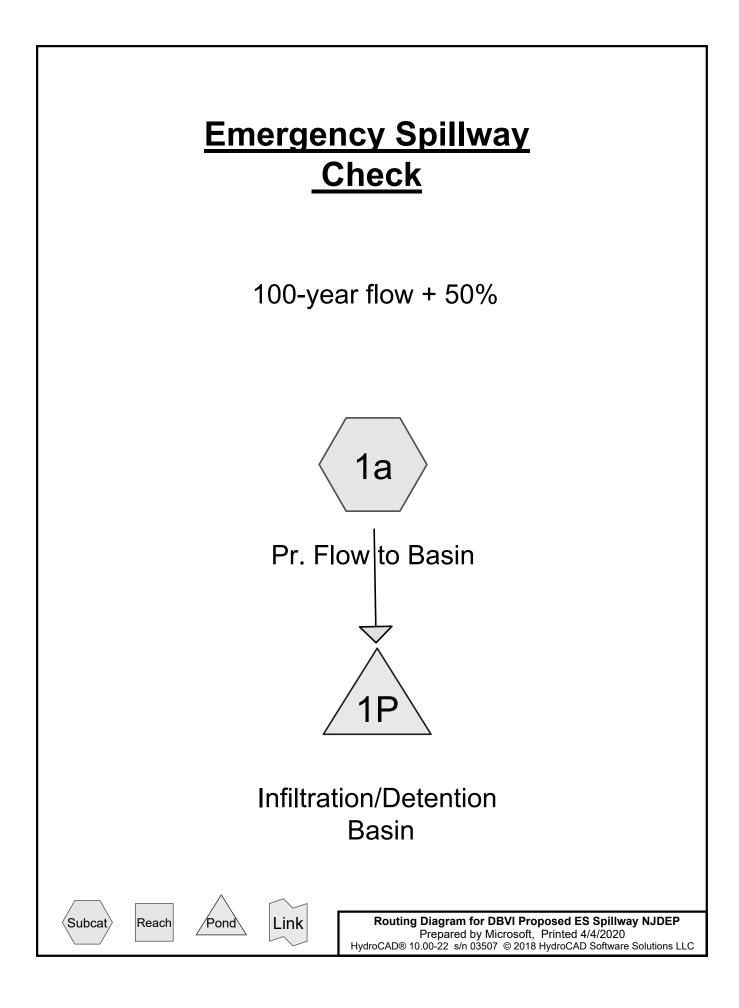
Volume	Inve	rt Avail.Sto	orage St	orage D	Description				
#1	104.5	104.50' 75,37		8 cf Custom Stage		rismatic)Listed below (Recalc)			
Elevatio		Surf.Area	Inc.Store		Cum.Store				
(fee	1	(sq-ft)	(cubic-fe	-	(cubic-feet)				
104.5		9,429		0	0				
105.0		10,650	5,0		5,020				
106.0		11,936	11,2		16,313				
107.0	00	13,287	12,6		28,924				
108.0	00	14,704	13,9	96	42,920				
109.0	00	16,185	15,4	45	58,364				
110.0	00	17,842		14	75,378				
Device	Routing	Invert	Outlet D	evices					
#1	Device 4	106.00'	4.0" Ve	rt. Orifi	ce/Grate C=	0.600			
#2	Device 4	108.00'				ctangular Weir 2 End Contraction(s)			
#3	Primary			20.0' long x 10.0' breadth Broad-Crested Rectangular Weir					
	,, ,			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60					
						70 2.69 2.68 2.69 2.67 2.64			
#4	Primary	imarv 104.00'		15.0" Round Culvert					
11-1	i innary	104.00	L= 40.0' RCP, square edge headwall, Ke= 0.500						
						103.68' S= 0.0080 '/' Cc= 0.900			
					v Area= 1.23 sf				
			11- 0.01	5, 1100	1.23 SI				
Driman		Max=4.33 cfs (@ 12 75 F	re Ц\//	-108 11' (Ero	o Dischargo)			
		ed Rectangula ses 4.33 cfs of							

-1=Orifice/Grate (Orifice Controls 0.63 cfs @ 7.25 fps)

-2=Sharp-Crested Rectangular Weir (Weir Controls 3.69 cfs @ 2.16 fps)

Summary for Link DA1: Prop Runoff - DA1

Inflow Are	a =	7.919 ac, 32.23% Impervious, Inflow Depth = 5.38" for 100-Year ev	/ent
Inflow	=	17.64 cfs @ 12.65 hrs, Volume= 3.553 af	
Primary	=	17.64 cfs @ 12.65 hrs, Volume= 3.553 af, Atten= 0%, Lag= 0.0) min


Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Summary for Link Tot PR: Total Proposed Site Runoff

Inflow Are	a =	15.960 ac, 1	8.28% Imperviou	s, Inflow Depth =	5.15"	for 100-Year event
Inflow	=	41.24 cfs @	12.55 hrs, Volur	ne= 6.845	af	
Primary	=	41.24 cfs @	12.55 hrs, Volur	ne= 6.845	af, Atter	n= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-120.00 hrs, dt= 0.05 hrs

Emergency Spillway <u>HydroCAD Model</u> 100 yr storm + OS blocked

Summary for Subcatchment 1a: Pr. Flow to Basin

Runoff = 28.99 cfs @ 12.24 hrs, Volume= 2.947 af, Depth=11.04"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-96.00 hrs, dt= 0.05 hrs NOAA 24-hr C 100 yr + 50% Rainfall=12.31"

_	Area	(ac) C	N Desc	cription						
	0.	198 7	70 Woo	oods, Good, HSG C						
	0.	795 7	74 >759	75% Grass cover, Good, HSG C						
*	* 2.209 98 Roof, Imperv. Prkg & Walks, HSG C									
_	3.202 90 Weighted Average									
	0.993 31.01% Pervious Area									
	2.	209	68.9	9% Imperv	ious Area					
	Tc	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	·				
	10.1	20	0.0050	0.03		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.34"				
	5.1	20	0.0100	0.07		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.34"				
	0.8	100	0.0100	2.03		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
_	16.0	140	Total							

Summary for Pond 1P: Infiltration/Detention Basin

Inflow Are	a =	3.202 ac, 68.99% Impervious, Inflow Depth = 11.04" for 100 yr + 50% event
Inflow	=	28.99 cfs @ 12.24 hrs, Volume= 2.947 af
Outflow	=	23.12 cfs @ 12.35 hrs, Volume= 2.568 af, Atten= 20%, Lag= 6.9 min
Primary	=	23.12 cfs @ 12.35 hrs, Volume= 2.568 af

Routing by Stor-Ind method, Time Span= 0.00-96.00 hrs, dt= 0.05 hrs Peak Elev= 108.88' @ 12.35 hrs Surf.Area= 16,010 sf Storage= 56,462 cf

Plug-Flow detention time= 434.7 min calculated for 2.566 af (87% of inflow) Center-of-Mass det. time= 374.2 min (1,137.0 - 762.8)

Volume	Invert	Avail	.Storage	Storage	e Description	
#1	104.50'	7	75,378 cf	Custor	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation (feet)		.Area (sq-ft)		:.Store c-feet)	Cum.Store (cubic-feet)	
104.50	9	9,429		0	0	
105.00	1	0,650		5,020	5,020	
106.00	1	1,936		11,293	16,313	
107.00	1:	3,287		12,612	28,924	
108.00	1.	4,704		13,996	42,920	
109.00	1	6,185		15,445	58,364	
110.00	1	7,842		17,014	75,378	

DBVI Proposed ES Spillway NJDEP

NOAA 24-hr C 100 yr + 50% Rainfall=12.31" Printed 4/4/2020 Page 3

Prepared by Microsoft HydroCAD® 10.00-2

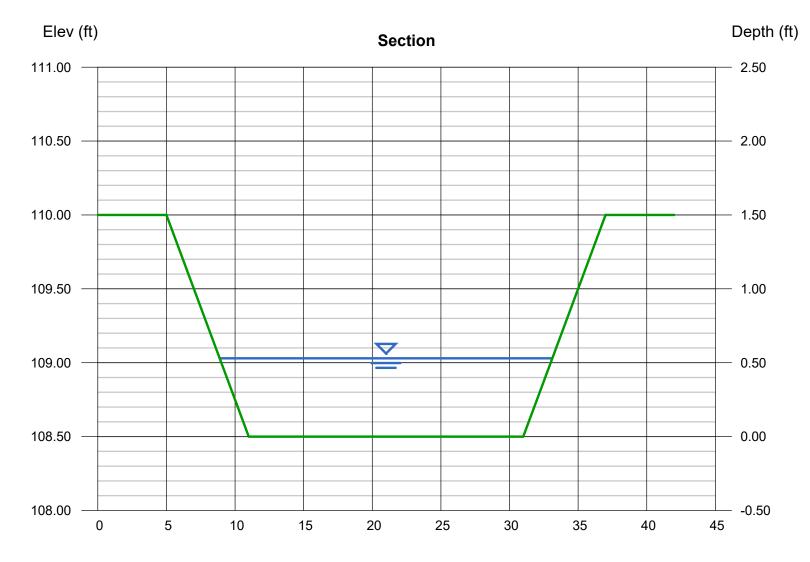
·22	s/n 03507	© 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices				
#1	Device 4	106.00'	4.0" Vert. Orifice/Grate C= 0.600				
#2	Device 4	108.00'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)				
#3	Primary	108.50'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir				
			Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60				
			Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64				
#4	Primary	104.00'	15.0" Round Culvert				
	-		L= 40.0' RCP, square edge headwall, Ke= 0.500				
			Inlet / Outlet Invert= 104.00' / 103.68' S= 0.0080 '/' Cc= 0.900				
			n= 0.013, Flow Area= 1.23 sf				
		$a_{1} = 22$ 00 of a	\bigcirc 10.25 hrs $\Box N = 100.00!$ (Free Discharge)				

Primary OutFlow Max=23.00 cfs @ 12.35 hrs HW=108.88' (Free Discharge) -3=Broad-Crested Rectangular Weir (Weir Controls 11.98 cfs @ 1.57 fps) -4=Culvert (Passes 11.02 cfs of 12.19 cfs potential flow)

1=Orifice/Grate (Orifice Controls 0.69 cfs @ 7.93 fps)

2=Sharp-Crested Rectangular Weir (Weir Controls 10.33 cfs @ 3.07 fps)

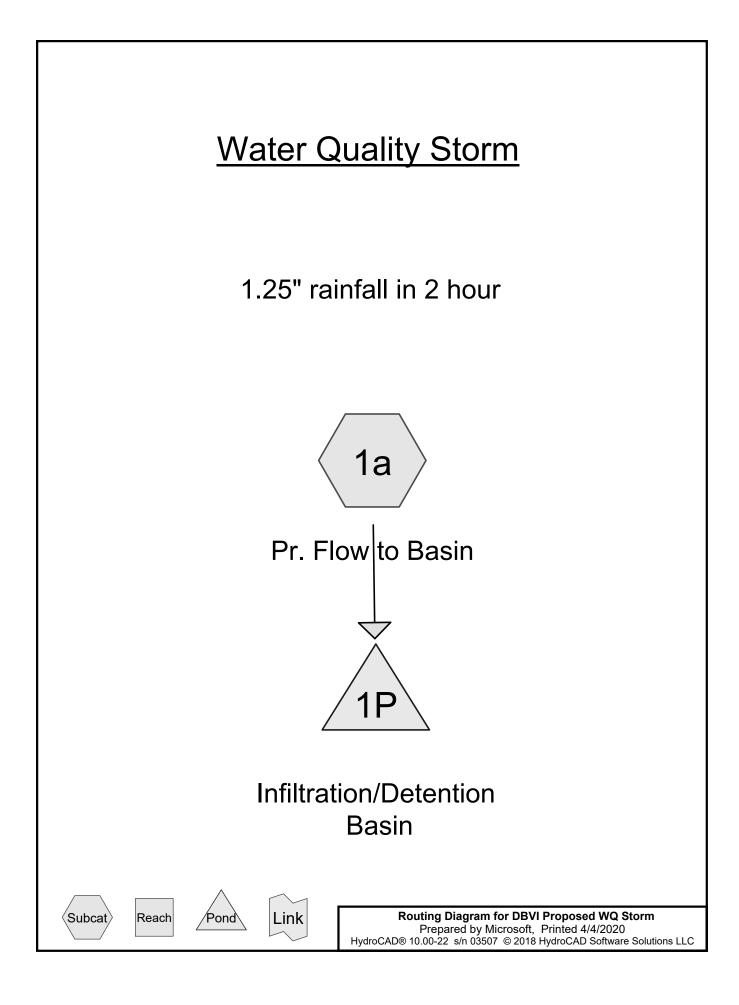

Channel Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Mar 30 2020

DBVI - Flow in Emergency Spillway Channel

Trapezoidal		Highlighted	
Bottom Width (ft)	= 20.00	Depth (ft)	= 0.53
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 23.12
Total Depth (ft)	= 1.50	Area (sqft)	= 11.72
Invert Elev (ft)	= 108.50	Velocity (ft/s)	= 1.97
Slope (%)	= 4.80	Wetted Perim (ft)	= 24.37
N-Value	= 0.100	Crit Depth, Yc (ft)	= 0.34
		Top Width (ft)	= 24.24
Calculations		EGL (ft)	= 0.59
Compute by:	Known Q		
Known Q (cfs)	= 23.12		


Reach (ft)

APPENDIX C

WATER QUALITY ANALYSIS

- WQ storm HydroCad model
- Vegetated Filter Strip evaluation

Summary for Subcatchment 1a: Pr. Flow to Basin

Runoff = 4.77 cfs @ 1.22 hrs, Volume= 0.196 af, Depth= 0.73"

Runoff by SCS TR-20 method, UH=SCS, Split Pervious/Imperv., Time Span= 0.00-12.00 hrs, dt= 0.05 hrs NJ DEP 2-hr WQ Storm Rainfall=1.25"

	Area	(ac) C	N Dese	cription						
	0.	198	70 Woo	/oods, Good, HSG C						
	0.	795	74 >759	75% Grass cover, Good, HSG C						
*	* 2.209 98 Roof, Imperv. Prkg & Walks, HSG C									
	3.202 90 Weighted Average									
	0.	993		, 1% Pervio						
	2.	209	68.9	9% Imperv	vious Area					
	Тс	Length	Slope	Velocity	Capacity	Description				
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	· · · · · · · · · · · · · · · · · · ·				
	10.1	20	0.0050	0.03		Sheet Flow,				
						Woods: Light underbrush n= 0.400 P2= 3.34"				
	5.1	20	0.0100	0.07		Sheet Flow,				
						Grass: Dense n= 0.240 P2= 3.34"				
	0.8	100	0.0100	2.03		Shallow Concentrated Flow,				
						Paved Kv= 20.3 fps				
	16.0	140	Total							

Summary for Pond 1P: Infiltration/Detention Basin

Inflow Area	=	3.202 ac, 68	8.99% Impervious,	Inflow Depth = 0.7	'3" for WQ Storm event
Inflow :	=	4.77 cfs @	1.22 hrs, Volume	= 0.196 af	
Outflow :	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af,	Atten= 100%, Lag= 0.0 min
Primary :	=	0.00 cfs @	0.00 hrs, Volume	= 0.000 af	-

Routing by Stor-Ind method, Time Span= 0.00-12.00 hrs, dt= 0.05 hrs Peak Elev= 105.32' @ 2.95 hrs Surf.Area= 11,064 sf Storage= 8,519 cf

Plug-Flow detention time= (not calculated: initial storage exceeds outflow) Center-of-Mass det. time= (not calculated: no outflow)

Volume	Invert	Avai	I.Storage	Storage	e Description	
#1	104.50'	-	75,378 cf	Custor	n Stage Data (Pr	ismatic)Listed below (Recalc)
Elevation (feet)		.Area sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
104.50	9	9,429		0	0	
105.00	10	0,650		5,020	5,020	
106.00	1	1,936	1	1,293	16,313	
107.00	1:	3,287	1	12,612	28,924	
108.00	14	4,704	1	13,996	42,920	
109.00	10	6,185	1	15,445	58,364	
110.00	1	7,842	1	17,014	75,378	

DBVI Proposed WQ Storm

NJ DEP 2-hr WQ Storm Rainfall=1.25" Printed 4/4/2020

Page 3

Prepared by Microsoft HydroCAD® 10.00-22 s/n 03507 © 2018 HydroCAD Software Solutions LLC

Device	Routing	Invert	Outlet Devices
#1	Device 4	106.00'	4.0" Vert. Orifice/Grate C= 0.600
#2	Device 4	108.50'	4.0' long Sharp-Crested Rectangular Weir 2 End Contraction(s)
#3	Primary	109.00'	20.0' long x 10.0' breadth Broad-Crested Rectangular Weir Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 Coef. (English) 2.49 2.56 2.70 2.69 2.68 2.69 2.67 2.64
#4	Primary	104.00'	15.0" Round Culvert L= 40.0' RCP, square edge headwall, Ke= 0.500 Inlet / Outlet Invert= 104.00' / 103.68' S= 0.0080 '/' Cc= 0.900 n= 0.013, Flow Area= 1.23 sf

Primary OutFlow Max=0.00 cfs @ 0.00 hrs HW=104.50' (Free Discharge)

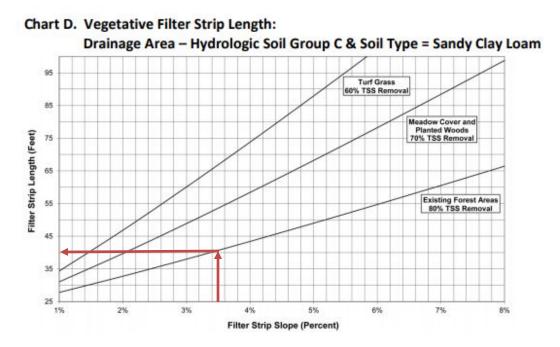
-3=Broad-Crested Rectangular Weir (Controls 0.00 cfs) -4=Culvert (Passes 0.00 cfs of 0.95 cfs potential flow) -1=Orifice/Grate (Controls 0.00 cfs) -2=Sharp-Crested Rectangular Weir (Controls 0.00 cfs)

PROJECT: DBVI LOCATION: Franklin Twp. DATE: October 2019

VEGETATED FILTER STRIP

The reconstructed entrance drive will drain towards the existing wooded area that runs along the edge of proposed pavement. This area will act as a vegetated filter strip that will treat the stormwater runoff from the asphalt driveway. The wooded area has been analyzed for each hydrologic drainage area (DA #2 and DA #3) to determine its pollutant removal capabilities and its viability to serve as a vegetated filter strip.

Supporting computations and information consistent with DRCC and NJ Stormwater regulations is as follows:


Drainage Area #2

Existing forested area adjacent to the asphalt drive:

Minimum Average Length = **90 feet** Maximum Average Slope = **3.5%** Royce loam, **HSG C**

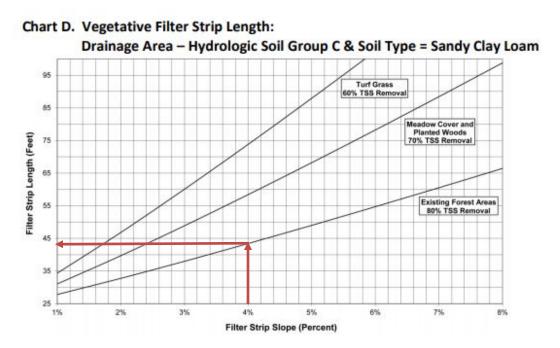
This area will act as a Vegetated Filter Strip to enhance water quality in accordance with the parameters outlined in Chapter 9.10 of the NJ Stormwater BMP Manual. The 3.5% slope is less than the maximum allowable (8%) for Existing Forest Areas in soils with HSG C.

Use Chart D from Ch. 9.10, the minimum required filter strip length for 'C' soils at 3.5% in an Existing Forest Area is approximately 40 feet.

Since the length of the existing forest area downslope of the asphalt drive is 90 feet, the filter strip area meets the requirement for 80% TSS Removal Rate.

Drainage Area #3

Existing forested area adjacent to the asphalt drive:


Minimum Length = 70 feet

Maximum Average Slope = **4%**

Royce loam, HSG C

This area will act as a Vegetated Filter Strip to enhance water quality in accordance with the parameters outlined in Chapter 9.10 of the NJ Stormwater BMP Manual. The 4% slope is less than the maximum allowable (8%) for Existing Forest Areas in soils with HSG C.

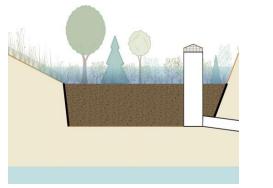
Use Chart D from Ch. 9.10, the minimum required filter strip length for 'C' soils at 4% in an Existing Forest Area is approximately 43 feet.

Since the length of the existing forest area downslope of the asphalt drive is 70 feet, the filter strip area meets the requirement for 80% TSS Removal Rate.

APPENDIX D

GROUNDWATER IMPACT ANALYSES

- NJGRS Annual Groundwater Recharge Analysis
- Calculation for Drain Time
- Hantush Spreadsheet output


New Jersey Groundwater		Annual Groundwater Re	(based on G	GSR-32)			Project Name: DBVI						
Recharge Spreadshee Version 2.0	et	Select Township \downarrow	Average Annual P (in)	Climatic Factor					Description: South Mide		dlebush Road		
November 2003		SOMERSET CO., FRANKLIN TWP					Analysis Date:	10/10/19					
Pre-Developed Conditions							Post-Developed Conditions						
Land Segment	Area (acres)	TR-55 Land Cover	Soil	Annual Recharge (in)	Annual Recharge (cu.ft)		Land Segment	Area (acres)	TR-55 Land Cover	Annual Recharge (in)	Annual Recharge (cu.ft)		
1	1.137	Open space	Royce	12.0	49,495		1	4.297	Open space	Royce	12.0	187,053	
2	0.631	Open space	Lansdowne	12.4	28,346		2	1.97	Open space	Lansdowne	12.4	88,496	
3	3.531	Woods	Lansdowne	12.3	157,702		3	1.711	Woods	Lansdowne	12.3	76,417	
4	0.028	Woods	Penn	12.9	1,307		4	0.031	Woods	Penn	12.9	1,447	
5	0.079	Woods	Rowland	11.9	3,408		5	0.079	Woods	Rowland	11.9	3,408	
6	5.252	Woods	Royce	12.2	232,011		6	3.631	Woods	Royce	12.2	160,402	
7	1.03	Open space	Penn	12.3	46,017		7	0.569	Impervious areas	Lansdowne	0.0	-	
8	3.702	Open space	Royce	12.0	161,152		8	2.348	Impervious areas	Royce	0.0	-	
9	0.029	Gravel, dirt Lansdowne		6.9	721		9	0.2	Brush	Royce	13.5	9,768	
10	0.393	Gravel, dirt	Royce	6.4	9,095		10	0.57	Brush	Penn	13.9	28,779	
11	0.088	Impervious areas	Lansdowne	0.0	-		11	0.068	Gravel, dirt	Royce	6.4	1,574	
12	0.06	Impervious areas	Royce	0.0	-		12	0.029	Gravel, dirt	6.9	721		
13	0						13	0.457	Open space	Penn	12.3	20,417	
14	0						14	0					
15	0						15	0					
Total =	16.0			Total Annual Recharge (in)	Total Annual Recharge (cu-ft)	Total = 16.0					Total Annual Recharge (in)	Total Annual Recharge (cu.ft)	
11.9 689,25							Annual	Recharg	je Requirements Calculat	tion ↓	10.0	578,481	
Procedure to fill the Pre-Development and Post-Development Conditions Tables						% of Pre-Developed Annual Recharge to Preserve = 100%					Total Impervious Area (sq.ft)	127,065	
For each land segment, first enter the area, then select TR-55 Land Cover, then select Soil. Start from the top of the table						Post-Development Annual Recharge Deficit= 110,771 (cubic feet)							
and proceed de	nd proceed downward. Don't leave blank rows (with A=0) in between your segment entries. Rows with A=0 will not be						Recharge Efficiency Parameters Calculations (area averages)						
lisplayed or used in calculations. For impervious areas outside of standard lots select "Impervious Areas" as the Land Cover.						RWC=	5.34	(in)	DRWC=	5.34	(in)		
oil type for impervious areas are only required if an infiltration facility will be built within these areas.						ERWC =	1.39	(in)	EDRWC=	1.39	(in)		

Project Name		Description			Analysis Date		BMP or L	.ID Type				
DBVI South Midd				Road	10/10/19							
Recharge BMP Input Parameters				Root Zone Water capacity Calculated Parameters				Recharge Design Pa	rameters			
Parameter	Symbol	<u>Value</u>	<u>Unit</u>	Parameter	<u>Symbol</u>	<u>Value</u>	Unit	Parameter	Symbol	<u>Value</u>	Unit	
BMP Area	ABMP	9429.0	sq.ft	Empty Portion of RWC under Post-D Natural Recharge	ERWC	1.05	in	Inches of Runoff to capture	Qdesign	0.38	in	
BMP Effective Depth, this is the design variable	dBMP	3.9	in	ERWC Modified to consider dEXC	EDRWC	1.05	in	Inches of Rainfall to capture	Pdesign	0.49	in	
Upper level of the BMP surface (negative if above ground)	dBMPu	-18.0	in	Empty Portion of RWC under Infilt. BMP	RERWC	0.84	in	Recharge Provided Avg. over Imp. Area		13.8	in	
Depth of lower surface of BMP, must be>=dBMPu dEXC 0.0 in		in				·	Runoff Captured Avg. over imp. Area		20.1	in		
Post-development Land Segment Location of BMP , Input Zero if Location is distributed or undetermined												
			BMP Calculated Size	Parameter	S		CALCULATION C	HECK MES	SAGES			
				ABMP/Aimp	Aratio	0.10	unitless	Volume Balance-> OK				
			1	BMP Volume	VBMP	3,028	cu.ft	dBMP Check>				
Parameters from Annual Recharg		e Worksheet		System Performance	Calculated	Parameters		dEXC Check>	OK			
Post-D Deficit Recharge (or desired recharge volume)	Vdef	110,771	cu.ft	Annual BMP Recharge Volume		110,771	cu.ft	BMP Location>	OK			
Post-D Impervious Area (or target Impervious Area)	Aimp	96,224	sq.ft	Avg BMP Recharge Efficiency		68.8%	Represents % Infiltration Recharged	OTHER NOTES				
Root Zone Water Capacity	RWC	4.06	in	%Rainfall became Runoff		77.9%	%	Pdesign is accurate only afte	r BMP dimension	is are updated	to make r	
RWC Modified to consider dEXC	DRWC	4.06	in	%Runoff Infiltrated		56.4%	%	of BMP infiltration prior to filli	ng and the area o	occupied by BM	/IP are ign	
Climatic Factor	C-factor	1.48	no units	%Runoff Recharged		29.4%	%	sensetive to dBMP, make su	re dBMP selected	d is small enou	gh for BM	
Average Annual P	Pavg	45.7	in	%Rainfall Recharged		22.9%	%	Segment Location of BMP if	you select "imper	vious areas" R	WC will b	
Recharge Requirement dr 10.5 in								the soil type and a shallow ro			0	

How to solve for different recharge volumes: By default the spreadsheet assigns the values of total deficit recharge volume "Vdef" and total proposed impervious area "Aimp" from the "Annual Recharge" sheet to "Vdef" and "Aimp" on this page. This allows solution for a single BMP to handle the entire recharge requirement assuming the runoff from entire impervious area is available to the BMP.

To solve for a smaller BMP or a LID-IMP to recharge only part of the recharge requirement, set Vdef to your target value and Aimp to impervious area directly connected to your infiltration facility and then solve for ABMP or dBMP. To go back to the default configuration clik the "Default Vdef & Aimp" button.

Infiltration Basin Drain Time

ESTIMATED WQ DRAIN TIME: Design Data: WQ Design Runoff Volume 13,846 CF* Basin Bottom Surface Area 9,429 SF Design Permeability Rate 10 inch/hr**

- * Peak WQ Storm Water Surface Elevation = 105.32; WQ Storm Storage = 8,519 CF
 However, 4" Orifice Elev. = 106.0: Storage @ El. 106.0 = 13,846 CF (Use for Drain Time calc.)
- ** Permeability Tests dated 6/26/19:

SL-3 : Permeability rate = 160.0 inch/hr , SL-4 : Permeability rate = 114.7 inch/hr

For Design Permeability, use maximum allowed from NJDEP BMP Manual, Section 9.5 Max. Design Permeability rate = 10 inch/hr

 $W.Q. Drain Time = \frac{\text{Water Quality Design Storm Runoff Volume}}{\text{Surface Area x Subsoil Design Permeability Rate}}$

W.Q. Drain Time = $\frac{13,846 \text{ cu. ft.}}{9,429 \text{ sq. ft. x } 10 \frac{\text{inch}}{\text{hr}} x \frac{1 \text{ft}}{12 \text{ inches}}}$

W.Q. Drain Time = 1.8 hours

This spreadsheet will calculate the height of a groundwater mound beneath a stormwater infiltration basin. More information can be found in the U.S. Geological Survey Scientific Investigations Report 2010-5102 "Simulation of groundwater mounding beneath hypothetical stormwater infiltration basins".

The user must specify infiltration rate (R), specific yield (Sy), horizontal hydraulic conductivity (Kh), basin dimensions (x, y), duration of infiltration period (t), and the initial thickness of the saturated zone (hi(0), height of the water table if the bottom of the aguifer is the datum). For a square basin the half width equals the half length (x = y). For a rectangular basin, if the user wants the water-table changes perpendicular to the long side, specify x as the short dimension and y as the long dimension. Conversely, if the user wants the values perpendicular to the short side, specify y as the short dimension, x as the long dimension. All distances are from the center of the basin. Users can change the distances from the center of the basin at which water-table aquifer thickness are calculated.

Cells highlighted in yellow are values that can be changed by the user. Cells highlighted in red are output values based on user-specified inputs. The user MUST click the blue "Re-Calculate Now" button each time ANY of the user-specified inputs are changed otherwise necessary iterations to converge on the correct solution will not be done and values shown will be incorrect. Use consistent units for all input values (for example, feet and days)

maximum thickness of saturated zone (beneath center of basin at end of infiltration period)

maximum groundwater mounding (beneath center of basin at end of infiltration period)

use consistent units (e.g. feet & days or inches & hours)

Specific yield, Sy (dimensionless, between 0 and 1)

Horizontal hydraulic conductivity, Kh (feet/day)*

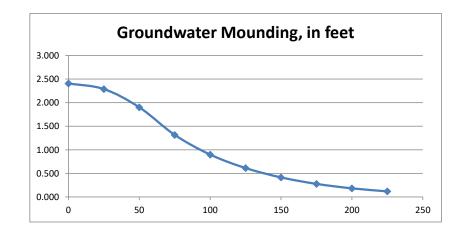
Recharge (infiltration) rate (feet/day)

1/2 length of basin (x direction, in feet)

1/2 width of basin (y direction, in feet)

initial thickness of saturated zone (feet)

duration of infiltration period (days)


Input Values	
2.0000	R
0.150	Sy
60.00	К
58.000	х
42.000	у
0.750	t
30.000	hi(0)

32.408	h(max)
2.408	∆h(max)

Ground-Distance from center of basin water Mounding, in in x direction, in

feet		feet	_
	2.408	0	ſ
	2.288	25	l
	1.902	50	Ľ
	1.316	75	
	0.899	100	
	0.613	125	
	0.415	150	
	0.277	175	
	0.182	200	
	0.118	225	

Re-Calculate Now

Conversion Table

inch/hour feet/day

1.33

4.00

In the report accompanying this spreadsheet

(ft/d) is assumed to be one-tenth horizontal

1.50 hydraulic conductivity (ft/d).

(USGS SIR 2010-5102), vertical soil permeability

0.67

2.00

36

hours

days

Disclaimer

This spreadsheet solving the Hantush (1967) equation for ground-water mounding beneath an infiltration basin is made available to the general public as a convenience for those wishing to replicate values documented in the USGS Scientific Investigations Report 2010-5102 "Groundwater mounding beneath hypothetical stormwater infiltration basins" or to calculate values based on user-specified site conditions. Any changes made to the spreadsheet (other than values identified as user-specified) after transmission from the USGS could have unintended, undesirable consequences. These consequences could include, but may not be limited to: erroneous output, numerical instabilities, and violations of underlying assumptions that are inherent in results presented in the accompanying USGS published report. The USGS assumes no responsibility for the consequences of any changes made to the spreadsheet. If changes are made to the spreadsheet, the user is responsible for documenting the changes and justifying the results and conclusions.

APPENDIX E

SOILS INVESTIGATION RESULTS

DBVI

NATIONAL EXECUTIVE COMMITTEE 25 HIGHLAND AVENUE METUCHEN, N.J.

SOIL SUITABILITY REPORT FOR Stormwater & Septic Design

630 SOUTH MIDDLEBUSH ROAD

BLOCK 37, LOT 46.03 TOWNSHIP OF FRANKLIN SOMERSET COUNTY, NJ

PREPARED BY BAYER-RISSE ENGINEERING, INC.

THEODORE H. BAYER, P.E. SEPTEMBER 4, 2019

Executive Summary

Bayer-Risse Engineering, Inc. conducted an onsite soils evaluation at a proposed development site of a DBVI – National Executive Committee facility to be constructed on a parcel of land identified as Lot 46.03 in Block 37 located in the Township of Franklin, Somerset County, NJ. The purpose of the evaluation was to investigate the subsurface soil & groundwater conditions and record appropriate data for the purposes of stormwater & septic system design. Ten (10) soil logs were excavated and recorded in areas identified by RG The Reynolds Group Inc. designated to construct proposed stormwater management & septic system features. The storm water management basins, infiltration areas and the test pit locations identified as TP-1 through TP-8 (Soil Logs SL-0627-1 to SL-0627-8) including the septic area (SL-0626-1 & 2) are illustrated on the Test Pit Location Plan included in the Appendix of this report.

Overall, the areas identified for proposed stormwater management basins provide suitable depth to seasonal high water table levels and permeability for stormwater recharge systems. Further, the area identified for the proposed septic system provides suitable depth to seasonal high water table level for a zone of treatment and permeability for the septic system's zone of disposal.

Soil Test Information

Bayer-Risse Engineering, Inc (BRE) excavated a total of eight (8) soil logs and permeability tests on the property for purposes of identifying site conditions relative to the design of three (3) storm water management systems. These soil logs (each with a permeability test), SL-0627-1 to SL-0627-8, are located in areas designated for the proposed stormwater management systems. An additional two (2) soil logs, SL-0626-1 & 2 with one (1) pit bail test were performed in the area designated for a proposed septic system. All tests were performed in substantial conformance with the NJ Stormwater BMP Manual, Appendix E: Soil Testing Criteria and N.J.A.C. 7:9A.

The soils found in the vicinity of the proposed stormwater management facilities and septic system, in general, consist of a 2 to 6" layer of topsoil underlain by a silt loam soil horizon underlain by a permeable fractured red shale. The soils and/or shale horizons are subject to seasonal high water table at various depths that were evident within the excavated soil profile pits. The depth to the seasonal high regional water table is taken as greater than or equal to the bottom of each soil log or, if observed, groundwater and/or mottling. Refer to Soil Test Summary Table in the Appendix for detailed data specific to soil log descriptions, groundwater level determinations, depths to machine refusal and permeability rates.

BRE employed in situ constant head permeability test methods prescribed by the U.S. Department of Interior, Bureau of Reclamation Procedure "Performing Field Permeability Testing by the Well Permeameter Method" (USBR 7300-89) to determine field measured permeability rates in unsaturated fractured rock (non-soil) conditions. The field measured permeability rates in the unsaturated subsurface conditions in the proposed stormwater management areas (SL-0627-1 to 3 and 5 to 8) were between 4.4 to 188 inches/hour. Pit bail permeability tests were performed in soil logs SL-0626-2 and SL-0627-4 where saturated

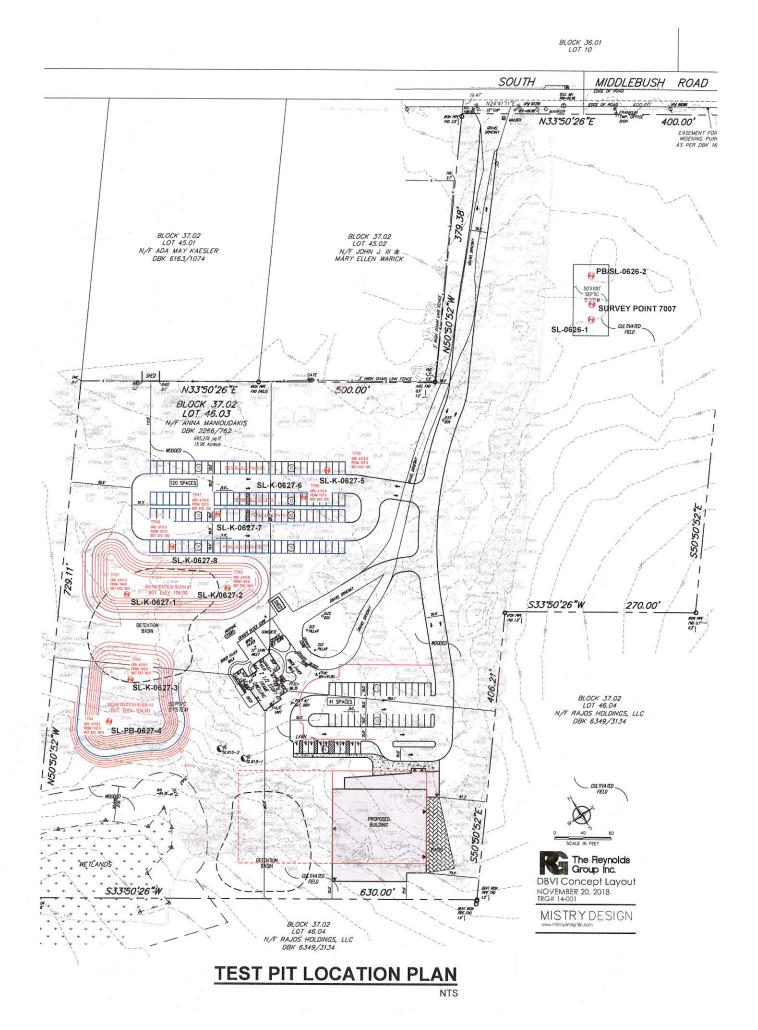
DBVI – South Middlebush Road Facility September 4, 2019 subsurface conditions were encountered. The pit bail tests verified positive permeability (36.7 & 87.2 inches/hour respectively) in the area of the septic system area and one proposed stormwater management basin.

A soil log interpretation form 2b has been prepared for each soil log excavated. A general soil description, SL-0626-1 and companion pit bail test was performed in soil log SL-0626-2 were witnessed by a representative of the Somerset County Health Department. The tests were performed in accordance with the method specified at NJAC 7:9A.

The following photographs present the basin flood test and the constant head well permeameter test:

Typical Constant Head Well Permeameter Test

Typical Pit Bail Test


Conclusion

The soil underlying the areas designated for the stormwater management facilities are suitable for installation of a subsurface recharge system. Due to the relatively deep depth of the seasonal high water table in the tested areas of the property, the bottom of the stormwater management features do not need to be elevated above the natural grade to provide the separation distance between the seasonal high water table and the bottom of the basin. We recommend that a design permeability rate of 2.2 inches per hour (one half of the slowest permeability tested in a horizon that extends above the seasonal high water table) be used as the basis of design for the stormwater management facilities.

The Appendix to this report contains the soil log reporting forms, pit bail test results, well permeameter test hole configuration details and the well permeameter test data evaluations to determine respective permeability rates.

DBVI – South Middlebush Road Facility September 4, 2019

	SO	IL TEST SU	IMMARY DA	ΛTA					
YEAR	Soil Log No.	Permeability Test No.	Permeability Test Rate/Status (in/hr @ Depth)	Depth to Seasonal High Water Table	Depth to Refusal (R) and/or Limit of Test (L)				
	Septic Syst	em Soil Testin	g						
	0626-1			60"	130" (L)				
	0626-2	PB-0626-2	36.7 @ 110"	34"	110" (R)				
	Stormwater Soil Testing								
	0627-1	K-0627-1	188.0 @ 88"	90"	100" (R)				
2019	0627-2	K-0627-2	4.4 @ 79"	114"	114" (R)				
2015	0627-3	K-0627-3	160.0 @ 97"	100"	102" (R)				
	0627-4	PB-0627-4	114.7 @ 105"	80"	105" (R)				
	0627-5	K-0627-5	33.8 @ 66"	90"	156" (L)				
	0627-6	K-0627-6	10.1 @ 60"	108"	108" (R)				
	0627-7	K-0627-7	16.9 @ 60"	144"	150" (L)				
	0627-8	K-0627-8	8.4 @ 66"	102"	125" (R)				
Notes:	K denotes	Constant Hea	d Permeability Te	st above gr	oundwater				
	PB denote	es Pit Bail Perm	neability Test in gr	oundwater					

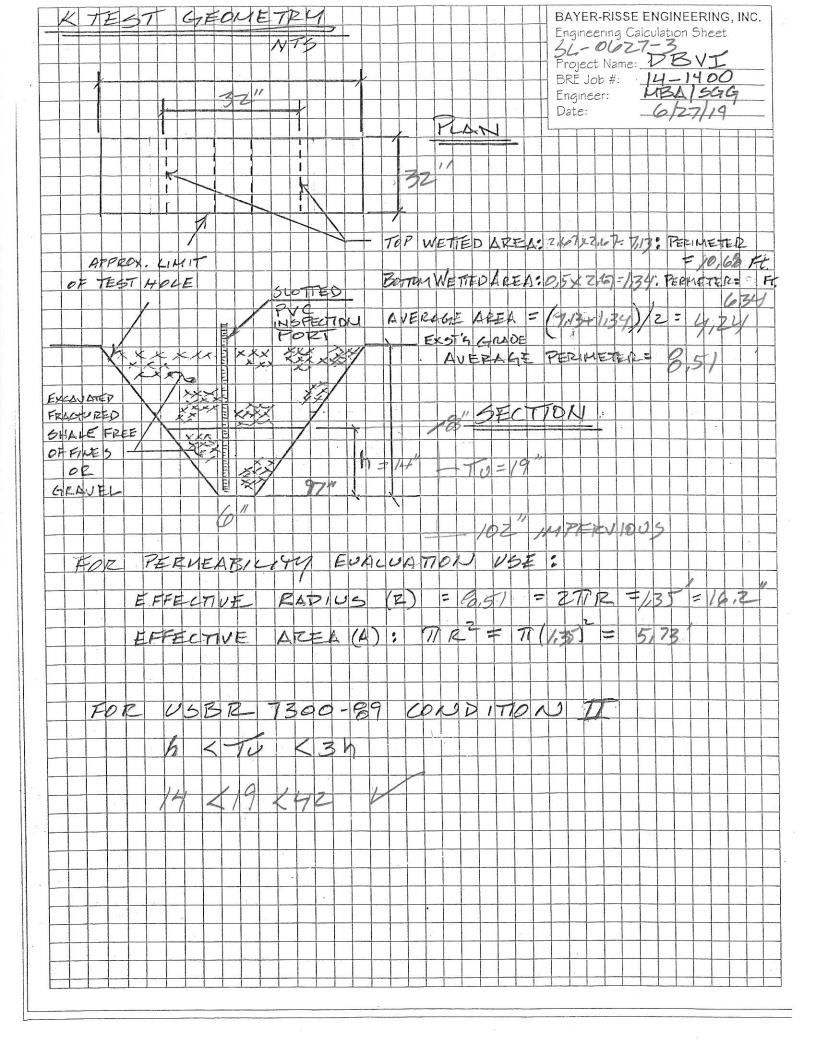
TOWNSHIP OF FRANKLIN, SOMERSET COUNTY, NJ

Form 2b Soil Log and Interpretation

		Block	37	Lot	46.03
1.	Log Numb	per 0627-3	Method:	Profile Pit	□Boring
2.	Soil Log:	Date Recorded:	June 27, 2019		
Depth (Inc Top - Bott	om	Fragment, If Pres If Present			Class; Estimated Volume % Coarse ce; Mottling Abundance, Size and Contrast,
0-4" 4-24" 24-102" ≻102"	Topsoil with m 5YR4/4 Reddis Nonsoil with 2 Machine Refus	h Brown Silt Loar 0% fillings; no mo	ottling, no seepage).	6 gravel; no mottling, no seepage. 3; Depth: 97"; Rate: 160.0 in/hr
2a.	If mottling g	give reason for mott	ling:		
3.		ter Observations: Indicate Depth: Flooded De	- pth after hours =	=	
4.	☐Massive R ☐Excessivel ☐Excessivel ☐Hydraulica ☐Hydraulica ☐Perched Z	Rock Substratum - De ock Substratum - Dep y Coarse Horizon - D y Coarse Substratum ally Restrictive Horizo ally Restrictive Substr	oth to Top: epth Top to Bottom: - Depth to Top: on - Depth Top to Botto atum - Depth to Top: _ pth Top to Bottom:	om:	
5.	Soil Suitabi	lity Classification: <u>II</u>	<u>Sc</u>		
6.	that falsifica	tion of data is a viol	tion furnished on Fo lation of the Water Po d in N.J.A.C. 7:14-8.	ollution Control A	ication is true and accurate. I am aware Act (N.J.S.A. 58:10A-1 et seq.) and is

Signature of Soil Evaluator Signature of Professional Engineer N.J. License No. <u>33806</u>

Mark Befudenson	Date	September 4, 2019	
J.	Date	September 4, 2019	
Seal			


PERMEABILITY TEST EVALUATION: CONDITION II

REFERENCE: US Department of the Interior, Bureau of Reclamation Procedure for "Performing Field Permeability Testing by the Well Permeameter Method", USBR 7300-89

BRE Job No. 14-1400 Condition II	Soil Log 06 Test Date:	27-3, Permeab 6/27/19	oility Test No.	K-0627-3
Depth of Test (in)	97	Duration of Test	138 min	
Height of water h (in)		Average head	<mark>14.0</mark> in	
Radius of pipe (in)		Area of pipe (in ²⁾	3.14	
Radius of hole (in)	16.2	Area of hole (in ²⁾	824.0616	
T _u (in)	19			
Volume of water used for test:	460			
	10.00			
Vi=Ai*h	43.96	575 D. 175		
Vo=(Ao-Ai)*h Vt=Vi+Vo	4022.52 4066.48			
VI-VI+V0	4000.40	11.2		
Measured infiltration rate =		770.05	ci/min in^3/min	<mark>3.33</mark> gal/min 0.45 cf/min
qV/(2Pi*h^2)	0.63			
h/r	14.00			
Viscosity of water (@ 20° C)	1.00			
ln(h/r)	2.64			
1/6+1/3(h/T _u) ^{^-1}	0.62			
			r	
K ₂₀ =	160.0	in/hr		

Field Data & Calculations:

Time of Reading (6/27/19)	Difference in Time	Time Interval (minutes)	Flow Rate (gpm)	Inflow Volume (Gallons)	Depth above Reference Point (inches)	h (inches)
13:17	0	0	3.33	0	14.0	14.0
15:35	2:18	138	3.33	460	14.0	14.0
Total/ Average		138	3.3	460	14.0	14.0

TOWNSHIP OF FRANKLIN, SOMERSET COUNTY, NJ

Form 2b Soil Log and Interpretation

		Block 3	37	Lot	46.03
1.	Log Numbe	r 0627-4	Method:	ØProfile Pit	□Boring
2.	Soil Log:	Date Recorded:	June 27, 2019		
Depth (Inche Top - Bottor	n	Fragment, If Present; If Present			Class; Estimated Volume % Coarse ce; Mottling Abundance, Size and Contrast,
6-36" 5 36-105" N		Brown Silt Loam; s % fillings; no mottli	ng, moderate s	eepage at 80".	ő gravel; no mottling, no seepage. /hr; 24 hr. SWL = 85"
2a.	If mottling gi	ve reason for mottling	g:		
3.		er Observations: adicate Depth: 80'' Flooded Depth	after <u>24</u> hours = <u>8</u>	<u>5"</u>	
4.	☐Massive Rod ☐Excessively ☐Excessively ☐Hydraulicall ☐Hydraulicall ☐Perched Zor	Zones: ock Substratum - Depth ck Substratum - Depth Coarse Horizon - Depth Coarse Substratum - De ly Restrictive Horizon - ly Restrictive Substratur ne of Saturation - Depth one of Saturation - Depth	o Top: n Top to Bottom: epth to Top: Depth Top to Botto n - Depth to Top: _ Top to Bottom:	om:	
5.	Soil Suitabilit	ty Classification: IISc			
6.	that falsificati		on of the Water P	ollution Control A	ication is true and accurate. I am aware Act (N.J.S.A. 58:10A-1 et seq.) and is

Signature of Soil Evaluator

Signature of Professional Engineer

N.J. License No. <u>33806</u>

Mark Befuclenon	Date	September 4, 2019	
F	Date	September 4, 2019	
Seal			

TOWNSHIP OF FRANKLIN, SOMERSET COUNTY, NJ Form 3f. Pit-Bailing Test Data (1 of 2)

	Block	37	Lot	46.03							
<u>ALL DATA N</u> <u>SHEET.</u>	AUST BE IN M	EASUREMENT UNITS	INDICATED (FEET OR	INCHES). ONLY ONE PI	TBAIL TEST PER						
1.	Test Number PB 627-4 Reference Soil Log #: SL 627-4 Date Tested: 6/27/										
2.	2. Using the reference level established, measure and record the following:										
	 Depth to Bottom of Pit, ft, D_{pit} = <u>8.75</u> Depth to Water Level after 24 hr Stabilization Period, ft, D_{water} = <u>7.08</u> Depth to Impermeable Stratum, ft, D_{stratum} = <u>8.75</u> (If depth is unknown assume it to be 1.5 times D_{pit}) Height of Water Level above Impermeable Stratum, ft, H= <u>1.67</u> (H = D_{stratum}- D_{water}). Length of Time Interval, min., T = <u>vories</u> 										
3.	Record the fo	llowing data in the table l	below:								
	 Depth o 		e interval for each measure ference Level in inches, d _a et 1 & w	ement taken, t _n , minutes.							
4.	Calculate the	following values and enter	er in the table below:								
	 Water L Average Average (Take av Permeal 	e Water Surface Area, ft ² , e Height of Water Level A		nd previous A _a) m, ft, h							

Time (h:mm)	t _n (min)	d _n (in)	l (ft)	w (ft)	An (sf)	h _{rise} (in)	A _{avg} (sf)	h (ft)	Ka (in/hr)
9:59 AM	0	98.00	3.42	2.67	9.11				
10:00 AM	1	96.00	3.50	2.67	9.33	2.00	9.22	0.67	208.9
10:03 AM	3	93.50	3.67	2.67	9.78	2.50	9.56	0.85	102.8
10:06 AM	3	91.00	3.92	2.67	10.44	2.50	10.11	1.06	135.1
10:09 AM	3	89.50	3.92	2.67	10.44	1.50	10.44	1.23	109.0
10:12 AM	3	88.50	3.92	2.67	10.44	1.00	10.44	1.33	92.0
10:15 AM	3	88.00	3.92	2.67	10.44	0.50	10.44	1.40	55.5
10:21 AM	6	87.00	3.92	2.67	10.44	1.00	10.44	1.46	70.7
10:27 AM	6	86.00	3.92	2.67	10.44	1.00	10.44	1.54	114.7

- Record the Following Data:
 - Final Depth of Pit, ft, $D_{pit} = 8.75$
 - Check here if testing was stopped due to machine refusal or machine limitations. {(See step 6 of Pitbail Test NJAC 7:9A-6.5(c)}
 - Final Depth to Impermeable Stratum, ft, D_{stratum} = <u>8.75</u> (If no impermeable stratum is encountered, assume D_{stratum} = D_{pit})
 - Height of Standpipe Above Reference Level, ft, $h_{pipe} = N/A$
 - Depth to Water Level after 24 hr Stabilization Period, ft, D_{water} = <u>7.08</u> (Take measurements from top of standpipe. Subtract h_{pipe}) (enter 0 if standpipe not used)
 - Height of Static Water Level Above Impermeable Stratum, ft, H= 1.67(H = D_{stratum}- D_{water})
 - Average Height of Water Level Above Impermeable Stratum, ft, h = 1.54
 - (Take average d_a from beginning and end of last time interval recorded in Section 4, convert to ft., and subtract from final D_{stratum}.)
- Re-calculation of K using data from Section 5 above and from final time interval of Section 4:

$$\begin{split} &K = (h_{rise'} t_{n,}) \times (A_{avg'}(2.27 \times (H^2 - h^2))) \times 60 \text{ min/hr} \\ &K = (\textbf{1.00/6.0}) \times (\underline{\textbf{10.44}}/(2.27 \times (\textbf{1.672} - \textbf{1.542}))) \times 60 \text{ min/hr} \\ &K = \underline{\textbf{114.7 in/hr}} \end{split}$$

I hereby certify that the information furnished on Form 3e of this application is true and accurate. I am aware that falsification of data is a violation of the Water Pollution Control Act (N.J.S.A. 58:10A-1 et seq.) and is subject to penalties as prescribed in N.J.A.C. 7:14-8.

Signature of Site Evaluator Signature of Professional Engineer N.J. License No. <u>33806</u>

Mark BAndenson Date September 4, 2019 Date September 4, 2019 Seal

6.

7.

5.

APPENDIX F

CONVEYANCE SYSTEM CALCULATIONS

- Storm Sewer Pipe Computations
- C.O.P. Sizing
- Anti-Seep Collar Calculation

CALCULATIONS FOR STORM SEWER SYSTEM

PREPARED BY: LMK

Page 1 of 1

PROJECT NAME: DBVI

STORM FREQ.:

<u>25 years *</u>

TRG #: 14-001 DATE:

<u>31-Mar-20</u>

INL	.ET	AREA			TOTAL	Tc		Q	PIPE	SLOPE	CAPACITY	FF VEL.	
from	to	(acres)	С	AxC	AxC	(min.)	(in/hr)	(cfs)	SIZE (in)	(%)	(cfs)	(fps)	NOTES
	102	0.64	0.83	0.53		12	5.29	2.8					
102	101				0.53	12	5.29	2.8	15	1.0	6.5		140 If RCP
	101	0.47	0.96	0.45		10	5.64	2.5					
101	100				0.98	12	5.29	5.2	15	1.0	6.5		181 lf RCP
101	100	(100 vr S	Storm che	ck) >>>*	0.98	12	6.09	6.0	15	1.0	6.5		181 lf RCP
		(100)											
	204	0.44	0.71	0.31		15	4.76	1.5					
204	203				0.31	15	4.76	1.5	15	0.5	5.0		166 If HDPE
	203	0.21	0.77	0.16		12	5.29	0.9					
203	202				0.47	15	4.76	2.3	15	0.6	5.0		49 If HDPE
	202	0.36	0.89	0.32		10	5.64	1.8					
202	201				0.79	15	4.76	3.8	15	0.6	5.0		150 lf RCP
201	200				0.79	15	4.76	3.8	15	0.6	5.0		88 If RCP
201	200	(100 yr S	Storm che	ck) >>>*	0.79	15	5.48	4.3	15	0.6	5.0		88 If RCP
	*	Rainfall Inte	ensity, I, fo	or a 25 year	event was	used for t	he pipe des	sign.					
		For final pip	pe runs int	o detention	basin, cap	acity chec	k was perfo	ormed using	g 100 year s	torm rainfal	l intensity		
0.S.	300		(100 yr \$	Storm Outf	low from E	Basin) >>>	,	4.33	15	0.8	5.8		40 If RCP

NOAA Atlas 14, Volume 2, Version 3 Location name: Somerset, New Jersey, USA* Latitude: 40.4559°, Longitude: -74.5495° Elevation: 110.78 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-	based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹									
Duration				Avera	ge recurren	ce interval (y	years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.00 (3.61-4.43)	4.75 (4.30-5.27)	5.64 (5.09-6.24)	6.29 (5.66-6.95)	7.08 (6.35-7.81)	7.63 (6.80-8.42)	8.18 (7.27-9.05)	8.69 (7.68-9.61)	9.31 (8.16-10.3)	9.78 (8.51-10.9)
10-min	3.19	3.80	4.52	5.03	5.64	6.08	6.50	6.89	7.37	7.70
	(2.89-3.53)	(3.44-4.21)	(4.07-5.00)	(4.53-5.56)	(5.05-6.22)	(5.42-6.70)	(5.78-7.18)	(6.09-7.61)	(6.45-8.17)	(6.70-8.57)
15-min	2.66	3.19	3.81	4.24	4.76	5.13	5.48	5.79	6.18	6.44
	(2.40-2.94)	(2.88-3.53)	(3.44-4.22)	(3.82-4.69)	(4.27-5.26)	(4.58-5.66)	(4.87-6.05)	(5.12-6.41)	(5.41-6.86)	(5.60-7.17)
30-min	1.82	2.20	2.71	3.07	3.53	3.86	4.20	4.51	4.92	5.22
	(1.65-2.02)	(1.99-2.44)	(2.44-2.99)	(2.77-3.40)	(3.16-3.89)	(3.45-4.26)	(3.73-4.64)	(3.99-4.99)	(4.31-5.45)	(4.54-5.80)
60-min	1.14	1.38	1.74	2.00	2.35	2.62	2.89	3.16	3.53	3.81
	(1.03-1.26)	(1.25-1.53)	(1.57-1.92)	(1.80-2.21)	(2.11-2.59)	(2.34-2.89)	(2.57-3.19)	(2.80-3.50)	(3.09-3.91)	(3.31-4.24)
2-hr	0.694	0.845	1.07	1.25	1.49	1.69	1.90	2.11	2.40	2.64
	(0.624-0.772)	(0.760-0.939)	(0.964-1.19)	(1.12-1.39)	(1.33-1.65)	(1.50-1.87)	(1.67-2.10)	(1.84-2.34)	(2.08-2.68)	(2.26-2.94)
3-hr	0.513	0.625	0.794	0.926	1.11	1.26	1.41	1.58	1.80	1.98
	(0.462-0.573)	(0.563-0.698)	(0.714-0.886)	(0.830-1.03)	(0.988-1.23)	(1.12-1.40)	(1.24-1.57)	(1.38-1.75)	(1.55-2.01)	(1.69-2.22)
6-hr	0.328	0.398	0.505	0.592	0.717	0.822	0.934	1.06	1.23	1.37
	(0.295-0.367)	(0.358-0.445)	(0.452-0.563)	(0.529-0.658)	(0.634-0.796)	(0.723-0.910)	(0.813-1.03)	(0.909-1.17)	(1.04-1.36)	(1.15-1.53)
12-hr	0.197	0.239	0.305	0.361	0.444	0.515	0.593	0.680	0.808	0.918
	(0.177-0.223)	(0.214-0.269)	(0.272-0.343)	(0.320-0.404)	(0.391-0.495)	(0.450-0.574)	(0.513-0.660)	(0.580-0.758)	(0.677-0.903)	(0.757-1.03)
24-hr	0.113	0.137	0.176	0.209	0.258	0.301	0.349	0.402	0.481	0.550
	(0.104-0.124)	(0.126-0.150)	(0.161-0.192)	(0.191-0.228)	(0.235-0.281)	(0.271-0.328)	(0.312-0.380)	(0.355-0.439)	(0.419-0.527)	(0.471-0.604)
2-day	0.065	0.079	0.101	0.120	0.147	0.170	0.195	0.223	0.263	0.297
	(0.060-0.072)	(0.073-0.087)	(0.092-0.112)	(0.109-0.132)	(0.133-0.161)	(0.153-0.186)	(0.174-0.214)	(0.196-0.245)	(0.228-0.291)	(0.255-0.330)
3-day	0.046	0.056	0.071	0.084	0.102	0.118	0.135	0.153	0.180	0.202
	(0.042-0.051)	(0.051-0.062)	(0.065-0.078)	(0.077-0.092)	(0.093-0.112)	(0.106-0.129)	(0.120-0.148)	(0.135-0.168)	(0.157-0.198)	(0.174-0.224)
4-day	0.037	0.045	0.056	0.066	0.080	0.092	0.105	0.118	0.138	0.154
	(0.034-0.040)	(0.041-0.049)	(0.052-0.062)	(0.060-0.072)	(0.073-0.088)	(0.083-0.101)	(0.094-0.114)	(0.105-0.130)	(0.121-0.152)	(0.134-0.170)
7-day	0.025	0.030	0.037	0.043	0.051	0.058	0.066	0.074	0.086	0.095
	(0.023-0.027)	(0.027-0.032)	(0.034-0.040)	(0.039-0.046)	(0.047-0.056)	(0.053-0.063)	(0.060-0.072)	(0.066-0.081)	(0.076-0.094)	(0.083-0.105)
10-day	0.020	0.023	0.029	0.033	0.039	0.044	0.049	0.055	0.063	0.069
	(0.018-0.021)	(0.022-0.025)	(0.027-0.031)	(0.031-0.036)	(0.036-0.042)	(0.040-0.048)	(0.045-0.053)	(0.050-0.059)	(0.056-0.068)	(0.061-0.075)
20-day	0.013	0.016	0.019	0.021	0.024	0.027	0.030	0.032	0.036	0.038
	(0.012-0.014)	(0.015-0.017)	(0.018-0.020)	(0.020-0.023)	(0.023-0.026)	(0.025-0.029)	(0.027-0.032)	(0.030-0.034)	(0.033-0.038)	(0.035-0.041)
30-day	0.011	0.013	0.015	0.017	0.019	0.021	0.022	0.024	0.026	0.028
	(0.010-0.012)	(0.012-0.014)	(0.014-0.016)	(0.016-0.018)	(0.018-0.020)	(0.020-0.022)	(0.021-0.024)	(0.022-0.025)	(0.024-0.028)	(0.026-0.030)
45-day	0.009	0.011	0.013	0.014	0.016	0.017	0.018	0.019	0.021	0.022
	(0.009-0.010)	(0.010-0.012)	(0.012-0.013)	(0.013-0.015)	(0.015-0.016)	(0.016-0.018)	(0.017-0.019)	(0.018-0.020)	(0.019-0.022)	(0.020-0.023)
60-day	0.008	0.010	0.011	0.012	0.014	0.015	0.015	0.016	0.017	0.018
	(0.008-0.009)	(0.009-0.010)	(0.011-0.012)	(0.012-0.013)	(0.013-0.014)	(0.014-0.015)	(0.015-0.016)	(0.015-0.017)	(0.016-0.018)	(0.017-0.019)

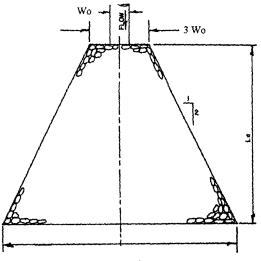
¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

RIPRAP APRON DATA SHEET


PROJECT NAME: DBVI	TRG #: 14-001
STORM FREQENCIES: 25 &100 Year	DATE: . 03/30/20
	BY [.] IMK

For Tailwater < 0.5D_o

OUTLET	YEAR	Q	VELOCITY-	PIPE	PIPE	TAILWATER	La	W (beg)	W (end)	d50 *
STRUCT.	STORM	(cfs)	max (fps)	HEIGHT (in)	WIDTH (in)	(ft)	(ft)	(ft)	(ft)	(in)
FES #100	25	5.20	6.20	15	15	0.25	15.4	3.8	19.2	6.4
FES #200	25	3.80	4.70	15	15	0.25	13.6	3.8	17.4	4.2
HW #300	100	4.33	5.40	15	15	0.25	14.3	3.8	18.1	5.0

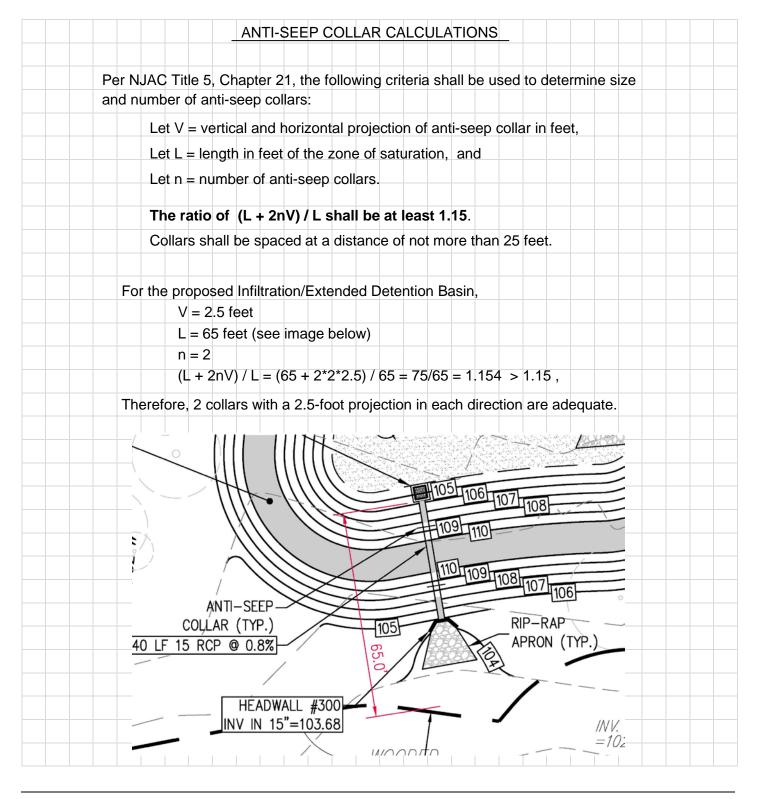
 $W = 3 W_o + L_a$

* Q to HW #1 is 25 year discharge from detention basin - see output which follo

For tailwater elevation less than the elevation of the center of the pipe,

$$L_a = (1.8 \frac{q}{D_a^{\frac{1}{2}}}) + 7Do$$
 TW < $\frac{1}{2} D_a$

$$d_{50} = \frac{0.02}{Tw} q^{1.33}$$
 where $q = \frac{Q}{Wo}$


For areas where Tw cannot be computed, use $Tw = 0.2 D_o$

 $W = 3W_0 + L_B$ (Tailwater < 0.5 D₀)

State Certificate of Authorization No. 24GA27969200 Engineers Landscape Architects Land Surveyors

Job No.	14-001	Name	DBVI
Sheet No.	1	Of	1
Calculated b	y LMK	Checked by	LMK
Date 03	-27-20	Scale	n.t.s.

APPENDIX G

NONSTRUCTURAL STRATEGIES

- Low Impact Development (LID) Checklist
- Nonstructural Strategies Point System (NSPS) Spreadsheet

New Jersey Stormwater Best Management Practices Manual

February 2004

APPENDIX A

Low Impact Development Checklist

A checklist for identifying nonstructural stormwater management strategies incorporated into proposed land development

According to the NJDEP Stormwater Management Rules at N.J.A.C. 7:8, the groundwater recharge, stormwater quality, and stormwater quantity standards established by the Rules for major land development projects must be met by incorporating nine specific nonstructural stormwater management strategies into the project's design to the maximum extent practicable.

To accomplish this, the Rules require an applicant seeking land development approval from a regulatory board or agency to identify those nonstructural strategies that have been incorporated into the project's design. In addition, if an applicant contends that it is not feasible to incorporate any of the specific strategies into the project's design, particularly for engineering, environmental, or safety reasons, the Rules further require that the applicant provide a basis for that contention.

This checklist has been prepared to assist applicants, site designers, and regulatory boards and agencies in ensuring that the nonstructural stormwater management requirements of the Rules are met. It provides an applicant with a means to identify both the nonstructural strategies incorporated into the development's design and the specific low impact development BMPs (LID-BMPs) that have been used to do so. It can also help an applicant explain the engineering, environmental, and/or safety reasons that a specific nonstructural strategy could not be incorporated into the development's design.

The checklist can also assist municipalities and other land development review agencies in the development of specific requirements for both nonstructural strategies and LID-BMPs in zoning and/or land use ordinances and regulations. As such, where requirements consistent with the Rules have been adopted, they may supersede this checklist.

Finally, the checklist can be used during a pre-design meeting between an applicant and pertinent review personnel to discuss local nonstructural strategies and LID-BMPs requirements in order to optimize the development's nonstructural stormwater management design.

Since this checklist is intended to promote the use of nonstructural stormwater management strategies and provide guidance in their incorporation in land development projects, municipalities are permitted to revise it as necessary to meet the goals and objectives of their specific stormwater management program and plan within the limits of N.J.A.C. 7:8.

Low Impact Development Checklist

A checklist for identifying nonstructural stormwater management strategies incorporated into proposed land development

FranklinTownship Municipality:						
Somerset March 26, 2020 County: Date:						
Review board or agency: Franklin Township Zoning Board of Adjustment						
Proposed land development name: DBVI Proposed House of Worship						
Lot(s):Block(s):37.02						
Project or application number:ZBA-19-00040						
Applicant's name: Dada Bhagwan Vignan Institute						
Applicant's address:630 South Middlebush Road						
Somerset, NJ 08873						
Telephone:732-470-6517 Fax:						
Email address:bhupenipatel@gmail.com						
Designer's name: Mitchel Ardman						
Designer's address: 575 Route 28 - Suite 110						
Raritan, NJ						
Telephone:908-722-1500 Fax:908-722-7035						
Email address:mardman@reynoldsgrp.com						

Part 1: Description of Nonstructural Approach to Site Design

In narrative form, provide an overall description of the nonstructural stormwater management approach and strategies incorporated into the proposed site's design. Attach additional pages as necessary. Details of each nonstructural strategy are provided in Part 3 below.

The proposed site improvements were designed so as to avoid disturbance of wetlands buffers, preserve existing vegetation where possible, minimize visual impacts to the area and . A perservation area will be established to permanently protect the wetland buffer.

The site design utilizes and improves the existing driveway to provide access to

the proposed house of worship in order to minimize disturbance of existing vegetation. <u>Portions of existing cultivated areas will be re-vegetated with natural ground cover.</u> This nonstructural technique will reduce site flows by increasing runoff absorption.

Part 2: Review of Local Stormwater Management Regulations

Title and date of stormwater management regulations used in development design:
Franklin Township Ordinance, Chapter 330 - Stormwater Management
Do regulations include nonstructural requirements? Yes: No:
If yes, briefly describe: <u>Include minimizing the increase of stormwater runoff rates and volumes</u> ,
maximizing the protection of natural drainage features (such as wetlands) and vegetation, minimize
land disturbance and soil compaction, minimize use of pollutants.
List LID-BMPs prohibited by local regulations:none found
Pre-design meeting held? Yes: Date: No:X
Meeting held with:
Pre-design site walk held? Yes: Date: No:X
Site walk held with:
Other agencies with stormwater review jurisdiction:
Name:Somerset County Planning Board
Required approval:Site Plan
Name: Somerset-Union Soil Conservation District
Required approval: Plan Certification
Name: Delaware-Raritan Canal Commission
Required approval: Certificate of Approval (staff technical approval granted)

Part 3: Nonstructural Strategies and LID-BMPs in Design

3.1 Vegetation and Landscaping

Effective management of both existing and proposed site vegetation can reduce a development's adverse impacts on groundwater recharges and runoff quality and quantity. This section of the checklist helps identify the vegetation and landscaping strategies and nonstructural LID-BMPs that have been incorporated into the proposed development's design to help maintain existing recharge rates and/or minimize or prevent increases in runoff quantity and pollutant loading.

A. Has an inventory of existing site vegetation been performed? Yes: <u>X</u> No: _____

If yes, was this inventory a factor in the site's layout and design? Yes: _____ No: _____

B. Does the site design utilize any of the following nonstructural LID-BMPs?

Preservation of natural areas?	Yes:	X	No:	If yes, specify % of site: _	21.6%
Native ground cover?	Yes:	Х	No:	If yes, specify % of site: _	4.8%
Vegetated buffers?	Yes: 2	X	No:	If yes, specify % of site: _	15.0%
0				, , , , , , , , , , , , , , , , , , , ,	

C. Do the land development regulations require these nonstructural LID-BMPs?

Preservation of natural areas?	Yes: X	No:	If yes, specify % of site:	N/A
Native ground cover?	Yes:	No: <u>X</u>	If yes, specify % of site:	
Vegetated buffers?	Yes: <u>X</u>	No:	If yes, specify % of site:	N/A

D. If vegetated filter strips or buffers are utilized, specify their functions:

Reduce runoff volume increases through lower runoff coefficient:	Yes:	X	No:
Reduce runoff pollutant loads through runoff treatment:	Yes:	X	No:
Maintain groundwater recharge by preserving natural areas:	Yes:	X	No:

3.2 Minimize Land Disturbance

Minimizing land disturbance is a nonstructural LID-BMP that can be applied during both the development's construction and post-construction phases. This section of the checklist helps identify those land disturbance strategies and nonstructural LID-BMPs that have been incorporated into the proposed development's design to minimize land disturbance and the resultant change in the site's hydrologic character.

A.	Have inventories of existing site soils and slopes been performed?	Yes: _	X	No:	
	If yes, were these inventories factors in the site's layout and design?	Yes: _	X	No:	
B.	Does the development's design utilize any of the following nonstruc	tural	LID-BM	Ps?	
	Restrict permanent site disturbance by land owners?	Yes: _	Х	No:	
	If yes, how: A preservation area will be established around the wet	land b	uffer an	d filter strips.	
	Restrict temporary site disturbance during construction?	Yes:	X	No:	
	If yes, how:The limit of disturbance protects existing trees and oth	er veg	etation	that do not need to	
	be disturbed to accommodate the proposed improvements. This lim	it will	be deli	neated with silt fenc	e
	Consider soils and slopes in selecting disturbance limits? $\ensuremath{N/A}$	Yes: _		No:	
	If yes, how:				
C.	Specify percentage of site to be cleared:29.6%	_ Reg	raded: _	23.7%	
D.	Specify percentage of cleared areas done so for buildings: <u>12.5%</u>				
	For driveways and parking: <u>51%</u> For roadw	vays: _			

E. What design criteria and/or site changes would be required to reduce the percentages in C and D above?

HSG A:HSG B:HSG C:30.5% Locating site disturbance within areas with less permeable soils disturbance within areas with greater permeable soils (HSG A and recharge rates and reduce runoff volume increases. In light of the what other practical measures if any can be taken to achieve this? On-site soils are exclusively HSG C. There are no HSG A or B	HSG D: s (HSG C and D) and minim l B) can help maintain ground HSG percentages in F and G a
HSG A:	HSG D: s (HSG C and D) and minim l B) can help maintain ground HSG percentages in F and G a
. Specify percentage of each HSG that will be permanently disturbed: HSG A:HSG B:HSG C:30.5% Locating site disturbance within areas with less permeable soils disturbance within areas with greater permeable soils (HSG A and recharge rates and reduce runoff volume increases. In light of the what other practical measures if any can be taken to achieve this? On-site soils are exclusively HSG C. There are no HSG A or B Does the site include Karst topography?	HSG D: s (HSG C and D) and minim l B) can help maintain ground HSG percentages in F and G a
Locating site disturbance within areas with less permeable soils disturbance within areas with greater permeable soils (HSG A and recharge rates and reduce runoff volume increases. In light of the what other practical measures if any can be taken to achieve this? On-site soils are exclusively HSG C. There are no HSG A or B and the site include Karst topography?	HSG D: s (HSG C and D) and minim l B) can help maintain ground HSG percentages in F and G a
Locating site disturbance within areas with less permeable soils disturbance within areas with greater permeable soils (HSG A and recharge rates and reduce runoff volume increases. In light of the what other practical measures if any can be taken to achieve this? On-site soils are exclusively HSG C. There are no HSG A or B and the site include Karst topography?	s (HSG C and D) and minim l B) can help maintain ground HSG percentages in F and G a
Locating site disturbance within areas with less permeable soils disturbance within areas with greater permeable soils (HSG A and recharge rates and reduce runoff volume increases. In light of the what other practical measures if any can be taken to achieve this? On-site soils are exclusively HSG C. There are no HSG A or B and the site include Karst topography?	s (HSG C and D) and minim l B) can help maintain ground HSG percentages in F and G a
If yes, discuss measures taken to limit Karst impacts:	Yes: No:X

3.3 Impervious Area Management

New impervious surfaces at a development site can have the greatest adverse effect on groundwater recharge and stormwater quality and quantity. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into a proposed development's design to comprehensively manage the extent and impacts of new impervious surfaces.

A. Specify impervious cover at site: Existing: <u>3.6%</u> Proposed: <u>18.6%</u>

B. Specify maximum site impervious coverage allowed by regulations: ______

C. Compare proposed street cartway widths with those required by regulations: N/A

Type of Street	Proposed Cartway Width (feet)	Required Cartway Width (feet)
Residential access – low intensity		
Residential access – medium intensity		
Residential access – high intensity with parking		
Residential access – high intensity without parking		
Neighborhood		
Minor collector – low intensity without parking		
Minor collector – with one parking lane		
Minor collector – with two parking lanes		
Minor collector – without parking		
Major collector		

D. Compare proposed parking space dimensions with those required by regulations:

Proposed: _____9' x 18' _____ Regulations: _____9' x 18'

E. Compare proposed number of parking spaces with those required by regulations:

Proposed: _______ Regulations: ______ 153

F.	Specify percentage of total site impervious cover created by buildings:
	By driveways and parking: By roadways:
G.	What design criteria and/or site changes would be required to reduce the percentages in F above?
	To reduce these percentages, applicant would have to reduce the size of the building or
	provide less parking.
H.	Specify percentage of total impervious area that will be unconnected:
	Total site: 27.6% Buildings: Driveways and parking: 27.6% Roads:
I.	Specify percentage of total impervious area that will be porous:
	Total site: Buildings: Driveways and parking: Roads:
J.	Specify percentage of total building roof area that will be vegetated:0%
K.	Specify percentage of total parking area located beneath buildings:0%
L.	Specify percentage of total parking located within multi-level parking deck:0%

3.4 Time of Concentration Modifications

Decreasing a site's time of concentration (Tc) can lead directly to increased site runoff rates which, in turn, can create new and/or aggravate existing erosion and flooding problems downstream. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into the proposed development's design to effectively minimize such Tc decreases.

When reviewing Tc modification strategies, it is important to remember that a drainage area's Tc should reflect the general conditions throughout the area. As a result, Tc modifications must generally be applied throughout a drainage area, not just along a specific Tc route.

A. Specify percentage of site's total stormwater conveyance system length that will be:

Storm sewer:	37%	Vegetated swale:	Natural cha	nnel:	24%
Stormwater ma	nagement faci	lity:19%	Other:	20%	

Note: the total length of the stormwater conveyance system should be measured from the site's downstream property line to the downstream limit of sheet flow at the system's headwaters.

B. What design criteria and/or site changes would be required to reduce the storm sewer percentages and increase the vegetated swale and natural channel percentages in A above?

Additional existing wooded areas would need to be disturbed in order to construct vegetated swales

to convey stormwater to the detention basin.

C. In conveyance system subareas that have overland or sheet flow over impervious surfaces or turf grass, what practical and effective site changes can be made to:

Decrease overland flow slope: Decrease size of parking areas; not practical since number of

parking spaces proposed is required by Township ordinance.

Increase overland flow roughness: ____ Decrease size of parking areas; not practical since number of

parking spaces proposed is required by Township ordinance.

3.5 Preventative Source Controls

The most effective way to address water quality concerns is by pollution prevention. This section of the checklist helps identify those nonstructural strategies and LID-BMPs that have been incorporated into the proposed development's design to reduce the exposure of pollutants to prevent their release into the stormwater runoff.

A. Trash Receptacles

Specify the number	of trash receptac	les provided: <u> </u>	dumpster with recycling p	prov1510ns
Specify the spacing l	between the trash	n receptacles:	N/A	
Compare trash recep	otacles proposed	with those requ	ired by regulations:	
Proposed: <u>N/A</u>		Regulations:		
Pet Waste	Stations		business	
Specify the number	of pet waste stati	ons provided: _		
Specify the spacing l	between the pet v	waste stations: _		
Compare pet waste s	stations proposed	l with those req	uired by regulations:	
Proposed:		Regulations:		
			0 0	
Specify percentage o	f total inlets that	comply with th	e NJPDES storm drain ir	nlet criteria: <u>100%</u>
Maintenance				
Specify the frequenc	-	-		
Street sweeping:	Proposed:		Regulations:	
Litter collection:	Proposed:		Regulations:	
Identify other storm debris:	nwater managem	ent measures o	n the site that prevent o	discharge of large trash and
	Specify the spacing N Compare trash recept Proposed: <u>N/A</u> Pet Waste Specify the number Specify the spacing N Compare pet waste s Proposed: <u></u> Inlets, Trash Racks, Specify percentage of Maintenance Specify the frequence Street sweeping: Litter collection: Identify other storm	Specify the spacing between the trash Compare trash receptacles proposed Proposed: <u>N/A</u> Pet Waste Stations Specify the number of pet waste stations Specify the spacing between the pet of Compare pet waste stations proposed Proposed:	Specify the spacing between the trash receptacles:	Compare trash receptacles proposed with those required by regulations: Proposed: N/A Regulations:

E.	Prevention and	Containment	of Spills	- N/A
----	----------------	-------------	-----------	-------

Identify locations where pollutants are located on th from being exposed to stormwater runoff:	ne site, and the features that prevent these pollutants
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:
Feature utilized to prevent pollutant exposure, harm	ful accumulation, or contain spills:
Pollutant:	Location:

Part 4: Compliance with Nonstructural Requirements of NJDEP Stormwater Management Rules

1. Based upon the checklist responses above, indicate which nonstructural strategies have been incorporated into the proposed development's design in accordance with N.J.A.C. 7:8-5.3(b):

No.	Nonstructural Strategy	Yes	No
1.	Protect areas that provide water quality benefits or areas particularly susceptible to erosion and sediment loss.	Х	
2.	Minimize impervious surfaces and break up or disconnect the flow of runoff over impervious surfaces.	Х	
3.	Maximize the protection of natural drainage features and vegetation.	Х	
4.	Minimize the decrease in the pre-construction time of concentration.	Х	
5.	Minimize land disturbance including clearing and grading.	Х	
6.	Minimize soil compaction.	Х	
7.	Provide low maintenance landscaping that encourages retention and planting of native vegetation and minimizes the use of lawns, fertilizers, and pesticides.	Х	
8.	Provide vegetated open-channel conveyance systems discharge into and through stable vegetated areas.		Х
9.	Provide preventative source controls.	Х	

2. For those strategies that have not been incorporated into the proposed development's design, provide engineering, environmental, and/or safety reasons. Attached additional pages as necessary.

In order to provide vegetated open channel conveyance, additional wooded areas would need to be disturbed. This would not be desirable.

NJDEP Nonstructural Strategies Points System (NSPS)

Version: January 31, 2006

Note: Input Values in Yellow Cells Only

Project:	DBVI - Proposed House of Worship	
Date:	October 7, 2019	
User:	The Reynolds Group, Inc.	
Notes:	Site Plan on South Middlebush Road in Franklin Twp, Somerset County	

Step 1 - Provide Basic Major Development Site Information

A. Specify Total Area in Acres of Development Site Described in Steps 2 and 3 =			16.0	Acres			
B. Specify by Percent the Various Planning Areas Located within the Development Site:							
State Plan Planning Area:	PA-1	PA-2	PA-3	PA-4	PA-4B	PA-5	Total % Area
Percent of Each Planning Area within Site:				100.0%			100.0%

Note: See User's Guide for Equivalent Zones within Designated Centers and the NJ Meadowlands, Pinelands, and Highlands Districts

Step 2 - Describe Existing or Pre-Developed Site Conditions

A. Specify Existing Land Use/Land Cover Descriptions and Areas:

	Specify Land Use/Land Cover in Acres for Each HSG							
Site						Use/Cover		
Segment	Land Use/Land Cover Description	HSG A	HSG B	HSG C	HSG D	Subtotals		Points
1	Wetlands and Undisturbed Stream Buffers					0.0]	0
2	Lawn and Open Space			6.5		6.5		94
3	Brush and Shrub					0.0		0
4	Meadow, Pasture, Grassland, or Range					0.0		0
5	Row Crop					0.0		0
6	Small Grain and Legumes					0.0		0
7	Woods - Indigenous			8.9		8.9		180
8	Woods - Planted					0.0		0
9	Woods and Grass Combination					0.0		0
10	Ponds, Lakes, and Other Open Water					0.0		0
11	Gravel and Dirt			0.4		0.4		4
12	Porous and Permeable Paving					0.0		0
13	Directly Connected Impervious					0.0		0
14	Unconnected Impervious with Small D/S Pervious					0.0		0
15	Unconnected Impervious with Large D/S Pervious			0.1		0.1		2
							-	
	HSG Subtotals (Acres):	0.0	0.0	16.0	0.0		Total Area:	16.0

0.0%

100.0%

0.0%

0.0%

HSG Subtotals (Acres): HSG Subtotals (%):

Total % Area:

100.0%

Points Subtotal:

279

Total Existing Site Points:

Step 3 - Describe Proposed or Post-Developed Site Conditions

A. Specify Proposed Land Use/Land Cover Descriptions and Areas:

Specify Land Use/Land Cover in Acres for Each HSG

Site				I III ACIES IOI E		Use/Cover		
Segment	Land Use/Land Cover Description	HSG A	HSG B	HSG C	HSG D	Subtotals		Points
1	Wetlands and Undisturbed Stream Buffers					0.0]	0
2	Lawn and Open Space			6.6		6.6	1	95
3	Brush and Shrub			0.9		0.9	1	14
4	Meadow, Pasture, Grassland, or Range					0.0		0
5	Row Crop					0.0	1	0
6	Small Grain and Legumes					0.0		0
7	Woods - Indigenous			5.5		5.5		110
8	Woods - Planted					0.0		0
9	Woods and Grass Combination					0.0		0
10	Ponds, Lakes, and Other Open Water					0.0		0
11	Gravel and Dirt			0.1		0.1		1
12	Porous and Permeable Paving					0.0		0
13	Directly Connected Impervious			2.4		2.4		0
14	Unconnected Impervious with Small D/S Pervious					0.0	1	0
15	Unconnected Impervious with Large D/S Pervious			0.5		0.5]	6
	HSG Subtotals (Acres):	0.0	0.0	16.0	0.0		Total Area:	16.0

0.0%

100.0%

0.0%

0.0%

HSG Subtotals (Acres): HSG Subtotals (%): Total Area: Total % Area: 16.0 100.0%

Points Subtotal:

B. Compare Proposed Impervious Coverage with Maximum Allowable Impervious Coverage:

Total Directly Connected Impervious Coverage = Total Unconnected Impervious Coverage with Small D/S Pervious = Total Unconnected Impervious Coverage with Large D/S Pervious = Total Site Impervious Coverage = Effective Site Impervious Coverage =

Specify Source of Maximum Allowable Impervious Coverage:

Allowable Site Impervious Cover from Maximum Impervious Cover Table: Note: See Maximum Impervious Cover Table Worksheet for Details

15% % of Site 0% % of Site 3% % of Site 18% % of Site 17% % of Site

 Table
 (None or Table)

 12%

C. Compare Proposed Site Disturbance with Maximum Allowable Site Disturbance:

Total Proposed Site Disturbance = Maximum Allowable Site Disturbance by Municipal Ordinance =

30%	% of Site
90%	% of Site

D. Describe Proposed Runoff Conveyance System:

Total Length of Runoff Conveyance System = Length of Vegetated Runoff Conveyance System = % of Total Runoff Conveyance System That is Vegetated =

1180	Feet
405	Feet
34%	

Points Subtotal:

Points Subtotal:

E. Residential Lot Clustering:

Percent of Total Site Area that will be Clustered = Minimum Standard Lot Size as Per Zoning (Note: 1/2 Acre or Greater) =

Maximum Proposed Cluster Lot Size (Note:1/4 Acre or Less) =

Percent of Clustered Portion of Site to be Preserved as Vegetated Open Space =

%
A
A
%

cres cres

of Site

% of Clustered Site Portion

Points Subtotal:

0

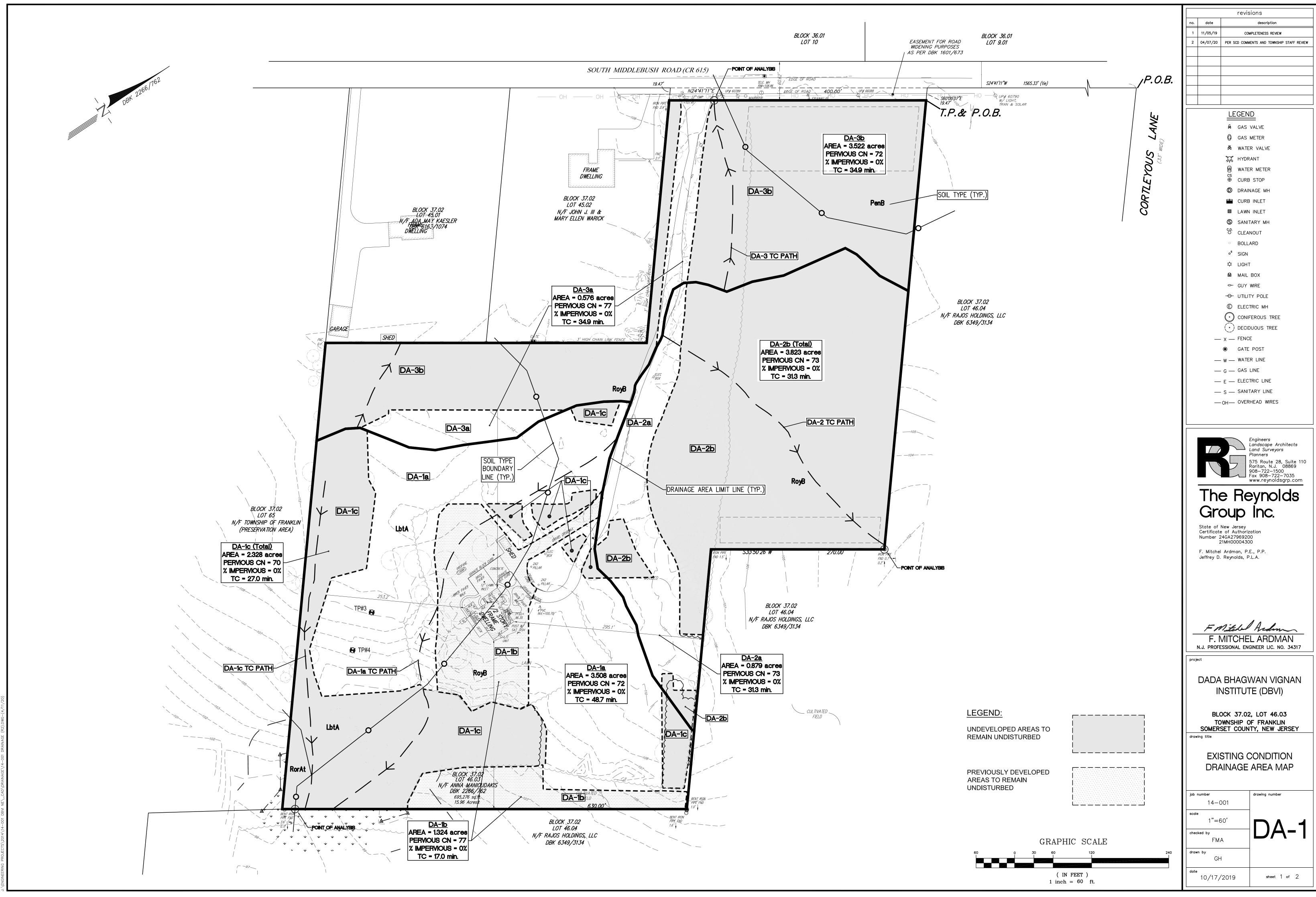
31

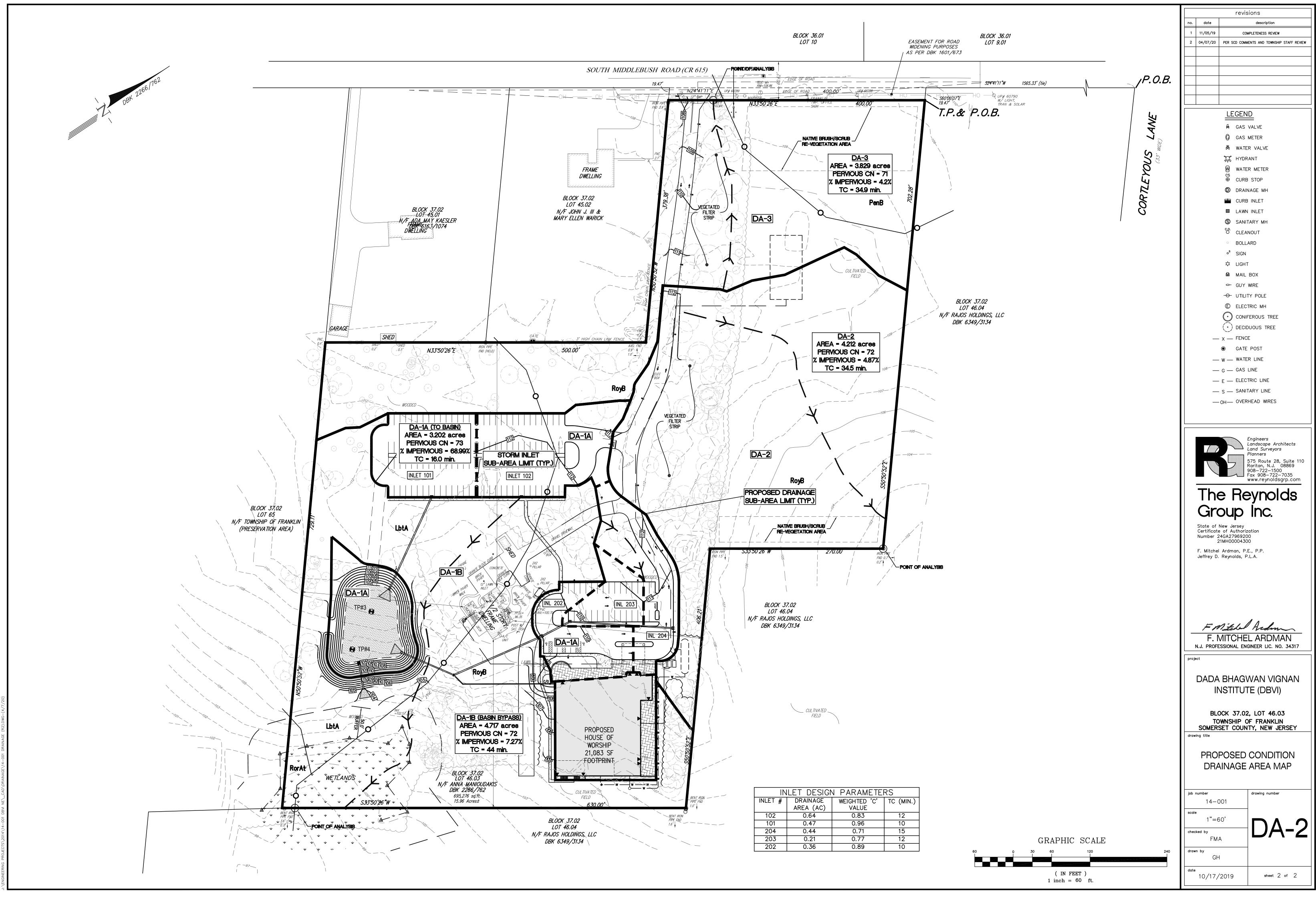
F. Will the Following be Utilized to Minimize Soil Compaction?

Proposed Lawn Areas will be Graded with Lightweight Construction Equipment:Yes(Yes or No)Percent of Proposed Lawn Areas to be Graded with Such Equipment:50%% of Lawn Areas

G. Are Any of the Following Stormwater Management Standards Met Using Only Nonstructural Strategies and Measures?

Groundwater Recharge Standards (NJAC 7:8-5.4-a-2):	No	(Yes or No)
Stormwater Runoff Quality Standards (NJAC 7:8-5.5):	No	(Yes or No)
Stormwater Runoff Quantity Standards (NJAC 7:8-5.4-a-3):	No	(Yes or No)


Note: If the Answers to All Three Questions at G Above are "Yes", Adequate Nonstructural Measures have been Utilized.


	Total Proposed Site Points: 300
	Ratio of Proposed to Existing Site Points: 108%
	Required Site Points Ratio: 104%
Nonstructural Point System Results:	Proposed Nonstructural Measures are Adequate

Points Subtotal:

Points Subtotal:

12

