gin

 \subseteq

Preliminary Report of Infiltration and Septic Evaluation

483 & 485 Elizabeth Avenue

Block 507.14, Lots 61 & 62 Township of Franklin, Somerset County, New Jersey

October 2020

Prepared For

Elizabeth Realty Partners, LLC 154 First Ave Manasquan, NJ 08736

Prepared By

Maser Consulting, Inc. 331 Newman Springs Road, Suite 203 Red Bank, NJ 07701 732.383.1950

N.J. C.O.A. #: 24GA27986500

Michael Camirolo-

Michael Carnivale, III, P.E. Senior Project Manager License No. GE45357 N.J. Licensed Professional Engineer

MC Project No. 19000649A

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	SITE DESCRIPTION	1
3.0	SCOPE OF SERVICES	2
4.0	SUBSURFACE EXPLORATION	3
5.0	SUBSURFACE CONDITIONS	4
5.1	Regional Geology	4
5.2	Subsurface Description	5
6.0	SOIL INFILTRATION & SEPTIC EVALUATION	6
7.0	DISCUSSION	8
8.0	CLOSING	9
9.0	LIMITATIONS	9
	<u>FIGURES</u>	
	Site Location Plan Figure No. 1	
	Test Pit Location Plan	
	<u>APPENDICES</u>	
APPE	NDIX A Test Pit Lo	gs
APPE	NDIX B Tube Permeameter Test Resu	lts

1.0 INTRODUCTION

This report presents the results of the infiltration and septic evaluation for the proposed warehouse development located at 483 & 485 Elizabeth Avenue in the Township of Franklin, Somerset County, New Jersey (Block 507.14, Lots 61 & 62), with respect to proposed stormwater management areas, septic beds, and preliminary infiltration rates for use in conceptual design. Maser Consulting understands that the proposed development consists of the construction of a 76,200 square foot (sf) building, containing warehouse and office space, with associated trailer spaces, vehicular parking, and site improvements, including stormwater management facilities and septic beds.

Infiltration rate considerations provided in this preliminary infiltration report are based on review of published data, accepted engineering practice, and field observations. Maser Consulting has evaluated subsurface conditions at exploration locations within the site and provided an evaluation of potential infiltration rates for soils encountered at depth within the area of the proposed stormwater management systems and design seasonal high-water levels.

2.0 SITE DESCRIPTION

The subject project site is located at 483 & 485 Elizabeth Avenue in the Township of Franklin, Somerset County, New Jersey, as shown on the attached Site Location Plan (Figure No. 1) and is referred to as Block 507.14, Lots 61 & 62 on the Franklin Township Tax Maps. The project site has frontage along Elizabeth Avenue and is located between School House Road and Weston Road. The subject property is approximately 8.4 acres. The site contains two residential structures and is partially wooded or contains lawn area. An unnamed tributary of the Raritan River traverses the site in a generally south to north direction. Ordinary and Intermediate Value Wetlands and State open water exist on the property per a Freshwater Wetland Letter of Interpretation (LOI) Line Verification issued on February 27, 2020.

Based on the "Concept Plan for Elizabeth Realty Partners LLC, Lots 61 & 62, Block 507.14, Franklin Township, Somerset County, New Jersey", dated September 21, 2020, prepared by Maser Consulting, we understand that a minor subdivision of the property in which the two existing lots

will be reconfigured to one residential lot of approximately 40,000 sf and one large lot, approximately 325,711 sf, for the 76,200 sf industrial building, including 9 truck loading spaces, 36 spaces for passenger vehicles, and one above-ground stormwater management basin.

3.0 SCOPE OF SERVICES

To explore the subsurface conditions within the influence of the proposed stormwater management and septic system areas, and to subsequently provide considerations regarding encountered subsurface infiltration rates and design estimated seasonal high-water levels (ESHWL), we performed the following scope of services:

- Engaged the services of an excavation contractor to excavate test pits for exploration of subsurface soil and groundwater conditions within proposed stormwater management area and septic system;
- b) Coordinated the witnessing of the septic system excavations and infiltration testing by the Somerset County Board of Health;
- c) Provided full-time technical observation of the excavation work;
- d) Obtained representative soil samples encountered within the zone of influence of the proposed construction;
- e) Evaluated the field data and prepared test pit logs showing the types of soils observed, depths to groundwater, and depths to estimated seasonal high groundwater;
- f) Performed a combination of laboratory testing (tube permeameter) on select soil samples and field testing (pit-bailing and basin flooding) to evaluate groundwater infiltration rates for the subgrade soils; and
- g) Provided a *Preliminary Report of Infiltration and Septic Evaluation* that reviews potential soil infiltration rates for design and groundwater considerations for the proposed basin and septic system requirements.

4.0 SUBSURFACE EXPLORATION

The subsurface conditions were evaluated on August 17 - 19, 2020 through the excavation of twelve test pits, labeled TP-1 through TP-12. Test pits for the exploration were excavated at the locations shown on the Test Pit Location Plan, Figure No. 2. Test pits were excavated to depths ranging from approximately 5 to 10 feet below the existing ground surface and were generally terminated where groundwater or practical bucket refusal was encountered.

Test pits TP-1 through TP-4 were performed in proposed wet basin between the southern loading dock, the DRCC Stream Corridor and the Franklin Township Stream Corridor Preservation Area. TP-5 through TP-6 were performed in a proposed septic disposal field in the southeast corner of the site. TP-7 through TP-9 were advanced in areas of potential proposed infiltration BMPs. TP-10 through TP-12 were conducted for the purpose of a potential revision to the current Hydrologic Soil Group (HSG) designation.

Representatives from Maser Consulting's Geotechnical Department observed the test pit excavations. In addition, the Somerset County Board of Health, witnessed the excavation and testing of test pits TP-5 and TP-6, as part of the septic evaluation. Soils encountered were classified in the field in accordance with N.J.A.C. 7:9A, Subchapter 5.3, Terminology Required for Soil Logs. Representative soil samples of strata encountered were collected and returned to Maser Consulting's Red Bank laboratory facilities for further evaluation and analyses. Details pertaining to the subsurface conditions encountered are presented on the Test Pit Logs in Appendix A.

Groundwater was encountered within the vertical reaches in six of the test pits excavated as part of this exploration – TP-1 through TP-6. The subsurface strata were observed with respect to mottling and soil staining for indications that seasonal high groundwater levels extended into the test pit depths. Staining and mottling within a soil stratum can indicate seasonal high-water level fluctuations but can also be found along wormholes and/or as an indication of geologic depositional factors. These conditions are evaluated in the field on a case by case basis. Potential indicators of seasonal high-water level were observed in the same test pits that groundwater was encountered. In test pits TP-2, TP-5 and TP-5, the estimated seasonal high-water level (ESHWL)

appears to correspond with the existing groundwater level. In test pits, TP-1, TP-4 and TP-4, the ESHWL was higher than the existing groundwater. Indicator of seasonal high water were not observed in the remaining test pits as part of this preliminary evaluation.

Please refer to Table 1 for a summary of depths to the groundwater table and to the estimated seasonal high-water level (ESHWL). Soil moisture and groundwater conditions should be expected to fluctuate with season, precipitation amounts, and other on-site and off-site factors including site utilization.

	TABLE 1 DEPTH TO GWT AND ESHWL SUMMARY										
Test Pit ID	Ground Surface Elev. (ft)	Depth of Test Pit (in)	Depth to Groundwater Table, GWT (in)	Depth to Estimated Seasonal High-Water Level, ESHWL (in)							
TP-1	73.20	96	60	39							
TP-2	73.49	84	60	60							
TP-3	76.07	96	90	90							
TP-4	74.33	96	49	49							
TP-5	80.97	120	92	92							
TP-6	80.97	120	74	74							
TP-7	79.26	72	Not Encountered	Not Encountered							
TP-8	75.40	96	Not Encountered	Not Encountered							
TP-9	78.33	78	Not Encountered	Not Encountered							
TP-10	79.81	72	Not Encountered	Not Encountered							
TP-11	80.81	72	Not Encountered	Not Encountered							
TP-12	85.28	60	Not Encountered	Not Encountered							

5.0 SUBSURFACE CONDITIONS

5.1 Regional Geology

According to the Surficial Geology of the Bound Brook Quadrangle, Somerset and Middlesex Counties New Jersey (Stanford 1992), the surficial soils are composed of weathered bedrock material, particularly weathered shale and mudstone (Map Unit – Qsw) which is characterized as diamict material consisting of some to many angular chips of red shale in reddish-brown, red, and reddish-yellow silty clay to clayey silt, generally 3 to 10

feet thick. Based on the *Bedrock Geology of the Bound Brook Quadrangle, Somerset and Middlesex Counties New Jersey* (Volkert and Monteverde, 2011), the bedrock is part of the Passaic Formation, Lower Jurassic and Upper Triassic (Map Unit -JTRp) which is an interbedded sequence of reddish-brown, and less commonly, maroon or purple, fine- to coarse-grained sandstone, siltstone, shaly siltstone, silty mudstone, and mudstone.

According to the Natural Resources Conservation Service (NRCS) Web Soil Survey, the soils at the project site are classified as *Norton loam*, 2 to 6 percent slopes (NotB). The typical soil profile consists of loam, silty clay loam, and channery loam, underlain by shallow weathered bedrock. The mapped Hydrologic Soil Group (HSG) is C. The parent material is classified as red fine-silty till and/or colluvium. The depth to restrictive feature (lithic bedrock) is anticipated to be 42 to 80 inches below grade.

5.2 Subsurface Description

The test pits were excavated in portions of the property that were either in grassy lawn areas or in the surrounding wooded areas. The test pits disclosed a layer of red, reddish brown and reddish yellow silt loam, slit clay loam and loam, with varying amounts of gravel ranging from 5 to 50%, and varying amounts of cobbles, up to 90%, but predominately in in the 5% or less range. This stratum varied in depth from approximately 20 to 72 inches below grade and can be characterized as residual or decomposed rock. Underlying this stratum is a layer of weathered bedrock consisting of red and reddish-brown fractured platy rock fragment with soil fillings which extended to the termination depths of the test pits.

Test pit logs presented in Appendix A provide soil descriptions visually classified per N.J.A.C. 7:9A, Subchapter 5.3, Terminology Required for Soil Logs.

6.0 SOIL INFILTRATION & SEPTIC EVALUATION

Selected soil samples were tested by our Geotechnical Laboratory in Mays Landing, New Jersey. The testing consisted of eleven (11) Tube Permeameter Tests performed to estimate the infiltration rate of groundwater through the soils at depth. Tube Permeameter testing was performed in accordance with N.J.A.C. 7:9A-6.2 and *New Jersey Stormwater Best Management Practices Manual, Appendix E* (BMP-E) requirements. The soil samples were selected based on the visual observation and field classification of soils encountered in the test pits by design personnel, the proposed infiltration depths, and comparison to other strata encountered at each test pit location. The tube samples were collected from the soils directly by inserting the sample tube into the ground and retrieving the tube by excavating the soils surrounding it. Tube Permeameter test results are summarized in Table 2 and presented in Appendix B.

	INFIL	TABLE 2 LTRATION TEST SUM	MARY	
Test Pit ID	Ground Surface Elev. (ft)	Test Depth below Existing Grade (in)	Infiltration Rate (in/hr)	K Rating
TP-1	73.20	7	0.53 / 3.08	K1 / K3
117-1	73.20	30	17.5 / 5.42	K4 / K3
TP-2	73.49	6	7.21 / 2.71	K4 / K3
TP-3	76.07	6	1.57 / 47.70	K2/K5
TD 4	74.22	6	14.45	K4
TP-4	74.33	24	12.49	K4
TP-7	78.26	6	9.27 / 9.08	K4 / K4
TP-9	78.33	5	6.08 / 0.82	K4 / K2
TP-10	79.81	15	0.11 / 4.30	K0 / K3
TP-11	80.81	8	21.09 / 11.87	K5 / K4
TP-12	85.28	12	15.98 / 2.54	K4 / K3

A single Basin Flooding Test was conducted in test pit TP-8 at a depth of 6 feet below existing grade in accordance with N.J.A.C. 7:9A-6.7 and BMP-E requirements. Following the excavation of the test pit to the required dimensions with a flat bottom, the test basin was filled with exactly 12 inches of water and allowed to drain completely which was accomplished in less than 24 hours, at which point it was immediately refilled with 12 inches. The basin drained completely within 12 hours of the second filling, and therefore is considered to be a fractured rock substratum. Per

BMP-E, since the basin drained in less than 12 hours, the design permeability rate that can be used shall be 0.5 in/hr.

For the septic evaluation conducted in test pit TP-6, a pit-bailing test was conducted in accordance with N.J.A.C. 7:9A-6.5 and BMP-E requirements, to obtain the field measured hydraulic conductivity value, K, using the following equations:

$$K = (h_{rise}/t) x [A_{av}/2.27(H^2 - h^2)] x 60 min/hr$$
 (in inches/hour)

where: K = permeability, in inches per hour;

 h_{rise} = difference in depth to water level at the beginning and end of the time interval, in inches;

t= length of time interval, minutes;

A_{av}= average of water surface area at the beginning of time interval (end of previous time interval) and at the end of the time interval, in square feet;

H= difference between depth to assumed static water level and actual or assumed depth to impermeable stratum, in feet (depth to impermeable stratum, if unknown, is assumed to be one and one-half times the depth of the pit; and

h = difference between average depth of water levels at the beginning and end of time interval and actual or assumed depth to impermeable stratum, in feet.

	TABLE 3 PIT-BAILING TEST SUMMARY										
t (min)	Date	d _n (in.)	Length (ft)	Width (ft)	Area, A _n (ft ²)	h _{rise} (in)	A _{sy} (ft ²)	H (ft)	K _a (in/hr)		
0	8/17	96	5.00	3.00	15.00						
5	8/17	91	6.33	3.00	18.99	5	17.00	9.16	14.0		
10	8/17	87	6.41	3.00	19.23	4	19.11	9.16	15.3		
15	8/17	84	7.41	3.00	22.23	3	20.73	9.16	15.0		

Notes: 1. Pit-Bailing Test Excavation and Water Level Reading Observed by Somerset County Board of Health.

2. Stabilized Groundwater Established in TP-6 at 70 in. below existing grade

3. Depth to impermeable stratum assumed to be 1.5 times the depth of the 10 ft deep pit = 15 feet.

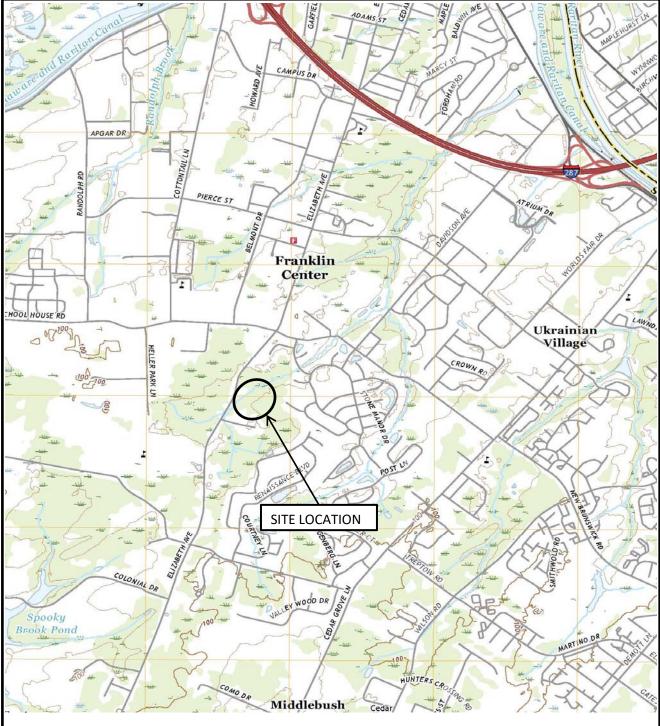
7.0 DISCUSSION

Test pits TP-1 through TP-4 were performed in proposed wet basin between the southern loading dock, the DRCC Stream Corridor and the Franklin Township Stream Corridor Preservation Area. TP-5 through TP-6 were performed in a proposed septic disposal field in the southeast corner of the site. TP-7 through TP-9 were advanced in areas of potential proposed infiltration BMPs. TP-10 through TP-12 were conducted for the purpose of a potential revision to the current Hydrologic Soil Group (HSG) designation.

Based upon the test pit information collected during our witnessed explorations and in conjunction with pit bailing testing, the soils within the proposed primary on-site septic disposal system, characterized by test pits TP-5 and TP-6, have a permeability rate of 15 in/hr, equivalent to a Soil Permeability Class Rating of K4, and are is considered suitable for use. For design purposes we recommend that the lower bound of K4 soils, 6 in/hr, be considered in the design of the septic bed.

The Basin Flooding Test conducted in test pit TP-8 at a depth of 6 feet below existing grade indicated that the weather and decomposed shale should be considered a fractured rock substratum. Given that the basin drained in less than 12 hours, a design permeability rate of 0.5 in/hr can be used per Appendix E.

According to the Natural Resources Conservation Service (NRCS) Web Soil Survey, the soils at the project site are classified as *Norton loam*, 2 to 6 percent slopes (NotB). The typical soil profile consists of loam, silty clay loam, and channery loam, underlain by shallow weathered bedrock. The mapped Hydrologic Soil Group (HSG) is C. The parent material is classified as red fine-silty till and/or colluvium, which is consistent with the description of the soils, per the *Surficial Geology of the Bound Brook Quadrangle, Somerset and Middlesex Counties New Jersey* (Stanford 1992), of weathered bedrock material, particularly weathered shale and mudstone consisting of some to many angular chips of red shale in reddish-brown, red, and reddish-yellow silty clay to clayey silt. Tube permeameter test results within samples collected in the upper 24 inches of the soil profile throughout the site generally had a Soil Permeability Class Rating of K3 or better. As a result, it is our opinion that the reclassification of the HSG designation is not practical.



8.0 CLOSING

The considerations contained in this report are contingent upon the actual field conditions being consistent with those encountered during our field exploration. Should any variation in the anticipated conditions be encountered, or should site regrading be proposed, Maser Consulting should be notified immediately to determine what impact the changed conditions may have upon the presented considerations.

9.0 LIMITATIONS

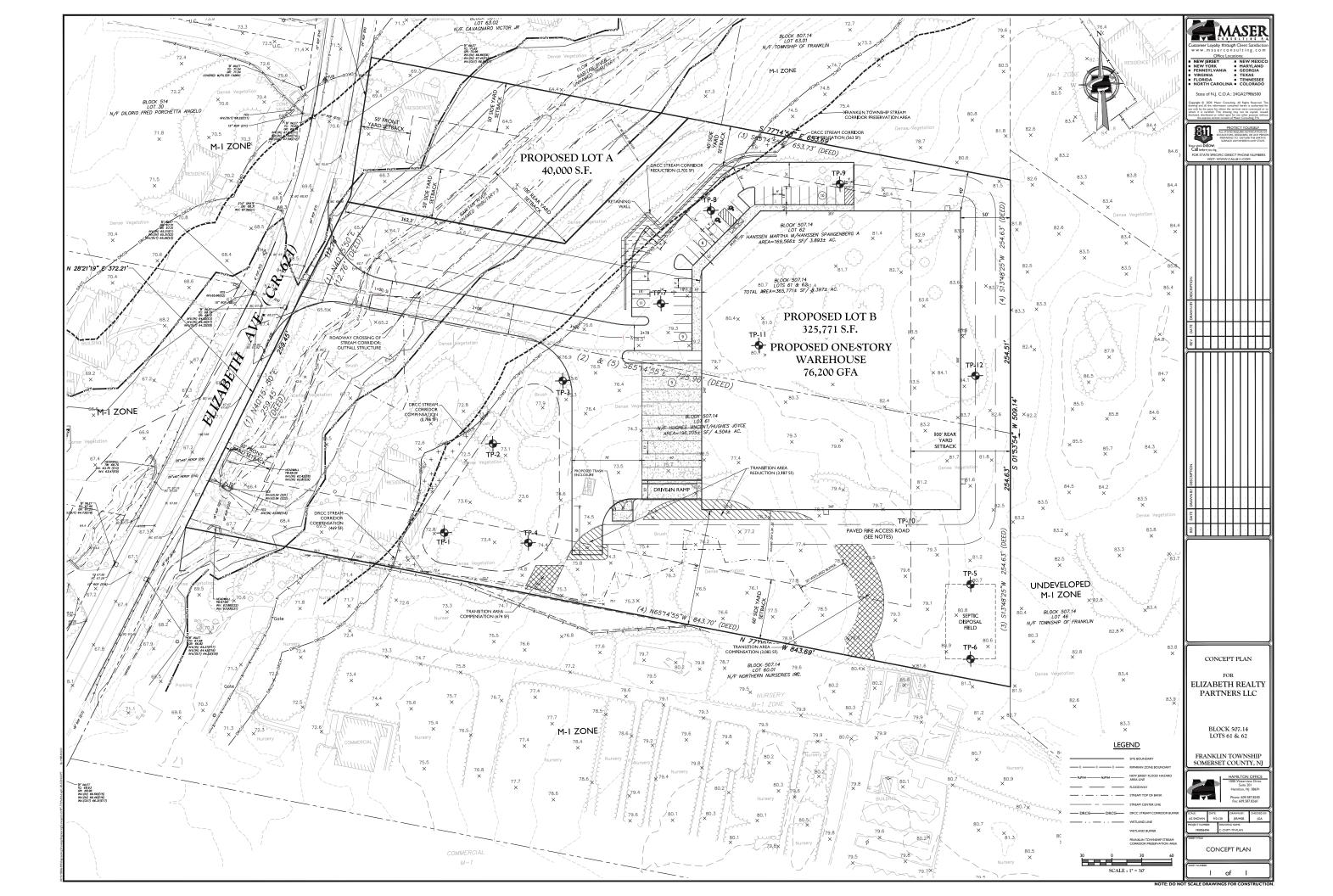
Services performed by Maser Consulting during this project have been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing in the same locality under similar conditions. No other representation, expressed or implied, and no warranty or guarantee is included or intended in the services provided. This is not an Environmental Assessment.

NOTES:

1.) *SITE MAP OBTAINED FROM USGS TOPOGRAPHIC MAP, BOUND BROOK, NJ QUADRANGLE, DATED 2019.

Consulting, Municipal & Environmental Engineers Planners - Surveyors - Landscape Architects

New Jersey New York Pennsylvania Virginia
Customer Loyalty through Client Satisfaction


litle:

SITE LOCATION MAP

Project: PROPOSED WAREHOUSE FACILITY 483 and 485 Elizabeth Avenue Block 507.14, Lots 61 & 62

Franklin Township, Somerset County, NJ

			,		, ,
Drawn By:	*	Checked By:	MC	Project No.:	19000649A
Scale:	N.T.S.	Date:	9/11/2020	Figure No.:	1

APPENDIX A TEST PIT LOGS

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

After Com MATERIAL DESCRIPTION 5YR 3/4 Silt Loam, 5% Gravel, Granular, Very Friable 0.58 2.5YR 4/4 Silt Loam, 40% Gravel, Subangular Blocky, Friable 1.75 5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic)	Firs	Ground Surface Ele Groundwater: First Encountered ▽			Datum: Depth (ft.)	TOPO Date
5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	Com	pletion	(0 Hrs.	.) 🔻	5	8/17/202
5YR 3/4 Silt Loam, 5% Gravel, Granular, Very Friable 0.58 2.5YR 4/4 Silt Loam, 40% Gravel, Subangular Blocky, Friable 5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	mplet	tion (≥ 2	24 Hrs.	.) <u>Ā</u>		
2.5YR 4/4 Silt Loam, 40% Gravel, Subangular Blocky, Friable 1.75 5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)		O DEPTH (ft.)	C. ELEVATION (ft.)	- 1	REMAR	KS
2.5YR 4/4 Silt Loam, 40% Gravel, Subangular Blocky, Friable 1.75 5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)						
5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	58	<u>.</u> -	+	+		
5YR 4/3 Silt Loam, Subangular Blocky, Friable 2.5 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	75		+	_		
2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 5 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	10					
2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 3.25 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 5 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)			Ť	1		
2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	2.5	2.5	70.7	<u>'</u>		
2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 2.5YR 4/4 Silt Loam 90% Cobble, Massive, Firm with Many/Fine/Distinct 7.5YR 5/6 Redox (Densic) 5.52 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)						
(Densic) 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	25	_	T	1		
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)			+ + +	-		
	5	5.0	▼68.2	<u>,</u>		
			+	-		
		7.5	65.7	-		
	0					
	0	L				
Log	ogged	By:	AY		Checked By:	· MC

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

	Number: 19000649A					
Date Started: Date Completed: Contractor: Operator: Equipment:	8/17/20 8/17/20 Bob Viersma & Sons Kevin Viersma Trackhoe	Firs At Com _l	Gro et Enco	oundwate untered (0 Hrs.)	<u>∑</u>	73.5 TOPO Date
GRAPHIC LOG LOG	MATERIAL DESCRIPTION	After Complet	0.0 DEPTH (ft.)	24 Hrs.) (#.) 73.5	₹	
· · · · · · · · · · · · · · · · · · ·	Loam, Granular, Very Friable y Clay Loam, 5% Gravel, Subangular Blocky, Friable	0.5	-			
2.5YR 4/4 S	ilt Loam 45% Gravel, Massive, Friable	1.25	 	+ -		
2.5YR 4/4 F	Bottom of Test Pit at 7.0 Ft.	7	2.5	71.0		
		Logged	Ву:	AY	_ Checked By:	MC

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Date Started: Date Completed: Contractor:	8/17/20 8/17/20 Bob Viersma & Sons			d Surface E	Elevation (ft.): Datum: Depth (ft.)	76.1 TOPO Date
Operator:	Kevin Viersma	Fire	st Encou	untered \overline{igspi}		
Equipment:	Trackhoe	At Com	pletion ((0 Hrs.) <u>▼</u>	7.5	8/17/202
		After Complet	ion (≥ 2	24 Hrs.) <u>▼</u>		
907 T00	MATERIAL DESCRIPTION		O DEPTH (ft.)	(ft.)	REMARI	KS
2.5YR 3/3 S	Silt Loam, Granular, Very Friable		0.0	70		
11 2 5 V D 4 /4 S	Sit Laure Cubangular Blacky Eriabla	0.5	↓ -	↓		
	Silt Loam, Subangular Blocky, Friable	1.5		+ -		
5YR 5/4 Silt o Redox	t Loam, 5% Gravel, Subangular Blocky, Friable with Many/Fir					
2 5YR 3/4 I	oam, 30% Gravel, Massive Very Firm (Densic)	2	† -	† †		
2.011(0)	Jaill, 30 /0 Graver, iviassive very i init (Densie)		2.5	73.6		
		3				
	Bottom of Test Pit at 8.0 Ft.	8	5.0	71.1		
	DOROTH OF TEST IR ACC.OT C.					
		Logged	By:	AY	Checked By:	: <u>MC</u>

Date Started: Date Completed:	<u>8/17/20</u> <u>8/17/20</u>	G	round	d Surface	e Elevation (ft.): Datum:	74.3 TOPO
Contractor:	Bob Viersma & Sons		Gro	undwat		Date
Operator: Kevin Viersma Coolis				untered	∇	
Equipment:	Trackhoe				<u>▼ 4.1</u>	8/17/2020
		After Completion	n (≥ 2	4 Hrs.)	Ā	
907	MATERIAL DESCRIPTION		O DEPTH (ft.)	St. ELEVATION (ft.)	REMAR	:KS
2.5YR 4/4 S	Silt Loam, 10% Gravel, Granular, Very Friable	0.5	0.0	74.0		
2.5YR 3/4 S	Silt Loam, 40% Gravel, Subangular Blocky, Friable	0.5	-	+ +		
		-	-			
☆ 5YR 4/3 Sill	t Loam, 5% Gravel, Subangular Blocky,Friable	1.5	_			
<u> </u>		2	_			
5YR 4/4 Silf 5/6 Redox	ty Clay Loam 5% Gravel, Subangular Blocky, Friable with	Many/Fine/Faint 7.5YR	2.5	71.8		
		3	2.0	7 1.0		
2.5YR 4/4 F	ractured Platy Rock Fragments with soil fillings (Paralithio		-	+ +		
		-	-			
		_	1	<u> </u>		
			_			
			5 0	60.2		
			5.0	69.3		
		-	-	+ +		
			_			
			_	† †		
		-	_	+ +		
			7.5	66.8		
		8				
-k-1	Bottom of Test Pit at 8.0 Ft.	L	_			

Notes: ESHWT: 49 inches - The observed redox observed in the soils are considered to be the result of slow infiltration and is not indicative of season high water

TEST PIT TP-4 PAGE 1 OF 1

PAGE 1 OF 1

Project: 483 & 485 ELIZABETH AVENUE

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Date Started: Date Completed:	8/17/20 8/17/20						
Contractor:	Bob Viersma & Sons		Groundwate				
Operator:							
Equipment:	Trackhoe	At Com	oletion ((0 Hrs.) <u>'</u>	<u>▼ 7.7</u>	8/17/2020	
		After Complet	ion (≥ 2	24 Hrs.)	<u>Ā</u>		
,				Z			
POR TOO	MATERIAL DESCRIPTION		DEPTH (ft.)	ELEVATION (ft.)	REMARI	KS	
5	WALLEY TO BE SOLUTION		DE (f	LEV	T CEIVIN (I C		
			0.0	Ш 81.0			
5YR 2.5/1	Silt Loam, Granular, Very Friable		0.0	01.0			
7 EVD E/A	Silt Loam 5% Gravel, Subangular Blocky, Friable	0.5	┞ -	↓			
7.51K 5/4	Sill Loam 5% Graver, Subangular blocky, Friable						
			-	† 1			
		1.58		+ +			
5YR 5/4 Fi	ractured Platy Shale with 2% Soil Fillings						
			-	† †			
			2.5	78.5			
			-	† †			
			-				
			-	† †			
			-				
			5.0	76.0			
			3.0	70.0			
			-	↓ ↓			
			-	† †			
			-	↓ ↓			
			-	† †			
			7.5	73.5			
] -	<u> </u>			
			-	+ +			
			L .				
			-	+ +			
		40		[]			
		10	10.0	71.0			

PAGE 1 OF 1

Project: 483 & 485 ELIZABETH AVENUE

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Operator: Kevin Viersma First Encountered $_{\underline{\underline{\nabla}}}$	Date Started: Date Completed: Contractor:	8/17/20 8/17/20 Bob Viersma & Sons		Ground	e Elevation (ft.): Datum: er: Depth (ft.)	TOPO	
At Completion (0 Hrs.)			Fir	st Encou	untered	Σ	
MATERIAL DESCRIPTION THE REMARKS 5YR 2.5/1 Silt Loam, Granular, Very Friable 5YR 5/4 Silt Loam, 10% Gravel, Subangular Blocky, Friable 2.5 2.5 78.5 5YR 4/3 Silty Clay Loam, 10% Gravel, Subangular Blocky, Firm 5YR 5/4 Fractured Platy Shale with 2% Soil Fillings			At Com	pletion ((0 Hrs.)	▼6.2	8/17/202
5YR 2.5/1 Silt Loam, Granular, Very Friable 5YR 5/4 Silt Loam, 10% Gravel, Subangular Blocky, Friable 2.5 2.5 78.5 5YR 4/3 Silty Clay Loam, 10% Gravel, Subangular Blocky, Firm 5YR 5/4 Fractured Platy Shale with 2% Soil Fillings			After Comple	tion (≥ 2	24 Hrs.)	<u>Ā</u>	
5YR 5/4 Silt Loam, 10% Gravel, Subangular Blocky, Friable 2.5 2.5 78.5 5YR 4/3 Silty Clay Loam, 10% Gravel, Subangular Blocky, Firm 5YR 5/4 Fractured Platy Shale with 2% Soil Fillings	20	MATERIAL DESCRIPTION				REMAR	KS
5YR 5/4 Silt Loam, 10% Gravel, Subangular Blocky, Friable 2.5 2.5 78.5 5YR 4/3 Silty Clay Loam, 10% Gravel, Subangular Blocky, Firm 5YR 5/4 Fractured Platy Shale with 2% Soil Fillings	5YR 2.5/1	Silt Loam, Granular, Very Friable		0.0	61.0		
5YR 4/3 Silty Clay Loam, 10% Gravel, Subangular Blocky, Firm 5YR 5/4 Fractured Platy Shale with 2% Soil Fillings			0.5	↓ .	<u> </u>		
5YR 4/3 Silty Clay Loam, 10% Gravel, Subangular Blocky, Firm 5.0 76.0 5YR 5/4 Fractured Platy Shale with 2% Soil Fillings		t Eddin, 1670 Graver, Gabangalar Biodky, Thable	2.5		70.5		
5YR 5/4 Fractured Platy Shale with 2% Soil Fillings	5YR 4/3 Sil	ty Clay Loam, 10% Gravel, Subangular Blocky, Firm					
			6	5.0	76.0		
7.5 73.5	5YR 5/4 Fr:	actured Platy Shale with 2% Soil Fillings			¥ -		
				7.5	73.5		
				 	- - - -		
10 10.0 71.0 Bottom of Test Pit at 10.0 Ft. Logged By:AY Checked By:	20				71.0		

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

/P, NJ.GPJ 	Consulting, Municipal & Environ Planners • Surveyors • Landso	Location: FRANKLIN TOWNSH Number: 19000649A	HIP, SOMERSET COUNTY, NJ				
ECTS/19000649A - 483 & 485 ELIZABETH AVENUE, FRANKLIN TWP, NJ.GPJ 나오 한국	Date Started: Date Completed: Contractor: Operator: Equipment:	8/17/20 8/17/20 Bob Viersma & Sons Kevin Viersma Trackhoe	At Com	Ground Surface E Groundwater: First Encountered At Completion (0 Hrs.) After Completion (≥ 24 Hrs.)		Datum: Depth (ft.) NE	78.3 TOPO Date
000649A - 483 & 485 ELIZ GRAPHIC	907	MATERIAL DESCRIPTION		O DEPTH (ft.)	ELEVATION (ft.)	REMARI	<s< th=""></s<>
AMIGINT/GINT PROJECTS/190	<u>71.17</u>	t Loam, Granular, Very Friable ty Clay Loam, 20% Gravel, 5% Cobble, Subangul	·				
- MASER CONSULTING P.A.WORK DOCUMENTS - M		am, 20% Gravel, Subangular Blocky, Very Friable	5	2.5	75.8		
SUNCONEDATOR -	2.5YR 4/4 I	Fractured Platy Rock Fragments with soil fillings (f	Paralithic)				
ASER TEST PIT - KZA DATA TEMPLATE.GDT - 10/19/20 17:50 - C:\USERS\MMAGNO\(C) フー	M. I	Bottom of Test Pit at 6.0 Ft.					
TEST PII			Logged	Ву:	AY	Checked By:	MC
SER	lotes:					TEST P	IT TP-7

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Date Started: Date Completed:	<u>8/17/20</u> 8/17/20		Ground	d Surface	Elevation (ft.): Datum:	75.4 TOPO
Contractor: Operator:	Bob Viersma & Sons Kevin Viersma		st Encou	oundwater	Depth (ft.)	Date
Equipment:	Trackhoe	At Com After Comple		(0 Hrs.) <u>¶</u> 24 Hrs.) <u>¶</u>		8/17/2020
GRAPHIC LOG	MATERIAL DESCRIPTION		O DEPTH (ft.)	(ft.)	REMAR	KS
5YR 4/4 Sil	t Loam, Granular, Very Friable	0.5				
5YR 5/4 Sil	ty Clay Loam, 10% Gravel, Subangular Blocky, Firm	2				
2.5YR 4/4 S	Silt Loam, 50% Gravel, Massive, Friable	2	2.5	72.9		
	Fractured Platy Rock Fragments with soil fillings (Paralithic)	3	ļ.			
			5.0	70.4		
		8	7.5	67.9		
	Bottom of Test Pit at 8.0 Ft.					
		Logged	Ву:	AY	Checked By:	MC
Notes:					TEST P	IT TP-8 GE 1 OF 1

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Contractor: Bob Viersma & Sons Operator: Kevin Viersma Groundwater: Depth (ft.) First Encountered	Date Started:	8/17/20		Ground	d Surface	Elevation (ft.):	78.3
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	Date Completed: Contractor: Operator:		Firs				TOPO Date
5YR 4/4 Silt Loam, Granular, Very Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 1.25 2.5YR 3/4 Loam, 50% Gravel, 20 % Cobble, Massive, Firm (Densic) 2.5 75.8 5.0 73.3 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Parallithic) 6.5						-	8/17/2020
5YR 4/4 Silt Loam, Granular, Very Friable 2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 1.25 2.5YR 3/4 Loam, 50% Gravel, 20 % Cobble, Massive, Firm (Densic) 2.5 75.8 2.5 75.8 2.5 75.8 2.5 75.8	GRAPHIC LOG	MATERIAL DESCRIPTION			1 1	REMARI	KS
2.5YR 4/4 Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable 1.25 2.5YR 3/4 Loam, 50% Gravel, 20 % Cobble, Massive, Firm (Densic) 2.5 75.8 5.0 73.3 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	5YR 4/4 Sil	t Loam, Granular, Very Friable	0.42				
2.5YR 3/4 Loam, 50% Gravel, 20 % Cobble, Massive, Firm (Densic) 2.5 75.8 5.0 73.3 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic)	2.5YR 4/4	Silty Clay Loam, 10% Gravel, Subangular Blocky, Friable	02	╄ -	+ +		
2.5 75.8 2.5 75.8 5.0 73.3 6 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5			1.25		+ +		
5.0 73.3 5.0 73.3 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	2.5YR 3/4 I	Loam, 50% Gravel, 20 % Cobble, Massive, Firm (Densic)			+ +		
5.0 73.3 5.0 73.3 2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5				2.5	75.8		
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	7 a a						
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	4 : 3 2 : 3 2 : 3						
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5))						
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	\$ 1			5.0	73.3		
2.5YR 4/4 Fractured Platy Rock Fragments with soil fillings (Paralithic) 6.5	6 8 8		6		+ +		
Bottom of Test Pit at 6.5 Ft.	2.5YR 4/4 I		6.5				
		Bottom of reserve at 0.5 T t.					
Logged By:AY Checked By:			Loaaed	By:	AY	Checked Bv:	MC

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

	Consulting, Municipal & Environm Planners • Surveyors • Landsci	Location: FRANKLIN TOWNSHIP, SOMERSET CO Number: 19000649A	JON 11, NO					
Dat Cor Ope	e Started: e Completed: ntractor: erator: uipment:	8/17/20 8/17/20 Bob Viersma & Sons Kevin Viersma Trackhoe	Firs At Comp After Complet				evation (ft.): Datum: Depth (ft.) NE	79.8 TOPO Date 8/17/2020
GRAPHIC LOG		MATERIAL DESCRIPTION		O DEPTH (ft.)	6.6 ELEVATION 8.6 (ft.)		REMARI	KS
	5YR 3/3 Silt	t Loam, 5% Gravel, Granular, Very Friable	0.42	0.0	70.0			
	5YR 5/4 Silt	t Loam, 5% Gravel, Platy, Friable		-	+ +			
	2.5YR 4/4 S	Silty Clay Loam, 20% Gravel, 5% Cobble, Subangular Blocky, Friable	1.67					
	2.5YR 3/4 S	Silt Loam, 90% Cobble, Massive, Very Firm (Densic)		-				
				2.5	77.3			
					- - 			
				5.0	74.8			
			6					
		Bottom of Test Pit at 6.0 Ft.						
			Logged	Rv:	AY		Checked By:	MC
Note	es:		Logged		Д		ST PI	 「 TP-10 Ge 1 OF 1

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Data Data Coro	e Started:	Number: 19000649A 8/17/20		Ground	d Surfac	e Fle	evation (ft)	80.8	
Dat Cor	e Completed:	8/17/20 Bob Viersma & Sons	Ground Surface Elevation (ft.): Datum: Groundwater: Depth (ft.) First Encountered						
	erator:	Kevin Viersma				-		0/4=/0000	
Equ	uipment:	Trackhoe	At Comp				NE	8/17/2020	
			After Complet	ion (≥ 2	24 Hrs.)	Ā			
GRAPHIC LOG		MATERIAL DESCRIPTION		O DEPTH (ft.)	© ELEVATION © (ft.)		REMARI	KS	
711	7.5YR 3/4 S	Silt Loam, 5% Gravel, Granular, Very Friable	0.40						
1/ 1/1/	5VP A/A Silf	y Clay Loam, 5% Gravel, Subangular Blocky, Friable	0.42	ļ	↓ ↓				
	311(4/4 3111	y Clay Loam, 376 Graver, Subangular blocky, I hable	4						
	2 5VR 4/4 S	Silt Loam, 40% Gravel, 5% Cobble, Subangular Blocky, Friable	1	+ -	+ +				
,[],[2.011(4/4 (one Edam, 40% Gravel, 5% Gobbie, Gubangulai Blocky, i habie							
P	0.51/5.4/4.5		1.67	├ ‐	† †				
	2.5YR 4/4 F	ractured Platy Rock Fragments with soil fillings (Paralithic)		L .	<u> </u>				
				2.5	78.3				
				-	† †				
					T 1				
				ļ .	↓ ↓				
				-	+ +				
				5.0	75.8				
				3.0	73.0				
					1 1				
			6						
		Bottom of Test Pit at 6.0 Ft.							
				D:	A \ /		011 15	140	
			Logged	Ву:	AY		Checked By:	MC	
Note	es:					TI	EST PIT	TP-11 GE 1 OF 1	

Location: FRANKLIN TOWNSHIP, SOMERSET COUNTY, NJ

Date Started:	8/17/20		Ground	d Surface	e Elevation (ft.):	85.3
Date Completed: Contractor:	8/17/20 Bob Viersma & Sons			oundwate	Datum:	TOPO Date
Operator:	Kevin Viersma	Firs	t Enco	untered	∑	
Equipment:	Trackhoe	At Com	oletion	(0 Hrs.)	▼ NE	8/17/2020
		After Complet	ion (≥ 2	24 Hrs.)	Ā	
000 000 000 000 000 000 000 000 000 00	MATERIAL DESCRIPTION		O DEPTH (ft.)	S ELEVATION S (ft.)	REMARI	KS
7.5YR 3/3 S	Silt Loam, 5% Gravel, Granular, Very Friable		0.0	65.5		
71-1/		0.5	╽.	↓ ↓		
5YR 5/6 Sil	t Loam, 20% Gravel, Subangular Blocky, Friable	1.67	 	 - -		
2.5YR 4/4 F	Fractured Platy Rock Fragments with soil fillings (Paralithic)					
			2.5	82.8		
		5		00.0		
202	Bottom of Test Pit at 5.0 Ft.		5.0	80.3		
lotes:		Logged	Ву:	AY	_ Checked By:	

APPENDIX B TUBE PERMEAMETER TEST RESULTS

Engineers Planners Surveyors Landscape Architects Environmental Scientists 5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

> T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•					MC #:				
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020	
Boring/Sam	ple # or Des	crip./Locatio	on: <u>TP-1A</u>						Depth:	7"	
Visual Descr	ription of So	il (USCS):	Brown red si	lty/clayey	SAND w	rith gravel an	d trace organ	ics			
Technician:	K. Perry			Proct	or Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)	
Initial Speci	men Data:					-	-		-	-	
Sample Type		Water	Length, L	ъ:		ш. Б			6		
Undisturbed	✓	Content (%)	(in)	Diame	ter (in)	Wet Den	sity (pcf)	Dry D	ensity (pcf)		
Re-Compact	ed 🗆	14.7	4.96	2.8	375	12	1.7		106.1		
	Radi	us of Burett	e, r: 0.3141	in			Rad	lius of Soi	l Specimen, R:	1.4375 in	
TEST DATA											
1	2	3	4		5	6	7		8	9	
		Readings	Head, h	Tim	ne, t	Temp, T	Permeat	ility at	Temp	Permeability at	
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k _T	Correc.	20°C, k ₂₀	
1	90.0	80.0	10.0	128.5	2.142	19.0	0.7	8	1.025	0.80	
2	90.0	80.0	10.0	125.1	2.086	19.0	0.8	0	1.025	0.82	
3	90.0	80.0	10.0	129.8	2.163	19.0	0.7	7	1.025	0.79	
4	80.0	70.0	10.0	191.6	3.194	19.0	0.5	9	1.025	0.61	
5	80.0	70.0	10.0	194.6	3.243	19.0	0.5	8	1.025	0.60	
6	80.0	70.0	10.0	192.7	3.212	19.0	0.5	9	1.025	0.61	
7	70.0	60.0	10.0	293.8	4.897	18.4	0.4	5	1.041	0.47	
8	70.0	60.0	10.0	295.7	4.928	18.4	0.4	4	1.041	0.46	
9	70.0	60.0	10.0	299.7	4.995	18.4	0.4	4	1.041	0.46	
10	60.0	50.0	10.0	383.5	6.391	18.0	0.4	0	1.051	0.43	
11	60.0	50.0	10.0	388.9	6.481	18.0	0.4	0	1.051	0.42	
12	60.0	50.0	10.0	383.9	6.398	18.0	0.4	0	1.051	0.43	
13	50.0	40.0	10.0	553.6	9.226	18.0	0.3	4	1.051	0.36	
14	50.0	40.0	10.0	558.4	9.306	18.0	0.3	4	1.051	0.36	
15	50.0	40.0	10.0	557.5	9.291	18.0	0.3	4	1.051	0.36	
Perm, $\mathbf{k}_{T}(7) = 60 {}^{\star} {}^{L/t} {}^{\star} {}^{2/R^{2}} {}^{L} {}^{L/h^{2}} {}^{L/h^{2}} = 60 {}^{\star} {}^{L/h^{2}} $								AVERA	GE k ₂₀ (in/hr):	0.53	
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	$(7)^*(8)$				SOIL PE	RMEABI	LITY CLASS:	K1	
Soil Perme	ability Clas	ses									
> 20 inches	-		K5								

Con i Cimoubinty Ciacco	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

⁻ Some localized gaps in soil due to gravel pieces and organic matter

John Kainer

Client:

Engineers Planners Surveyors Landscape Architects Environmental Scientists

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

> T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

MC #: 19000649A

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Project:	483 and 485	Elizabeth A	venue, Frankl	lin Towns	ship, NJ				Date:	September 11, 2020		
Boring/Samp	ple # or Des	crip./Locatio	n: <u>TP-1B</u>						Depth:	7"		
Visual Descr	ription of So	il (USCS):	Brown red si	lty/clayey	y SAND w	ith gravel an	d trace organ	nics				
Technician:	K. Perry			Proct	tor Data:	Max Dry Do	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)		
					!				-	-		
Initial Specia		****	T41- T									
Sample Type Undisturbed	V	Water Content (%)	Length, L (in)	Diame	eter (in)	Wet Den	Density (pcf) Dry De		sity (pcf) Dry Dens		ensity (pcf)	
Re-Compacte		14.7	4.48	2.8	875	11!	8.2	103.1				
•		ius of Burett	e, r: 0.3141	in			Rad	lius of Soil	l Specimen, R:	1.4375 in		
					TEST	T DATA						
1	2	3	4	!	5	6	7		8	9		
Trial No.		Readings	Head, h		ne, t	Temp, T		Permeability at		Permeability at		
Thai No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,		Correc.	20°C, k ₂₀		
1	90.0	80.0	10.0	21.7	0.362	19.0	4.18		1.025	4.29		
2	90.0	80.0	10.0	21.6	0.361	19.0	4.19		1.025	4.30		
3	90.0	80.0	10.0	21.6	0.360	19.0	4.20		1.025	4.31		
4	80.0	70.0	10.0	35.9	0.598	19.0	2.8		1.025	2.94		
5	80.0	70.0	10.0	35.6	0.593	19.0	2.89	9	1.025	2.96		
6	80.0	70.0	10.0	35.7	0.595	19.0	2.88	8	1.025	2.95		
7	70.0	60.0	10.0	45.5	0.758	19.0	2.6	1	1.025	2.68		
8	70.0	60.0	10.0	45.5	0.758	19.0	2.6	1	1.025	2.68		
9	70.0	60.0	10.0	45.6	0.759	19.0	2.6	1	1.025	2.67		
10	60.0	50.0	10.0	52.8	0.879	19.0	2.60	6	1.025	2.73		
11	60.0	50.0	10.0	52.9	0.882	19.0	2.60	6	1.025	2.72		
12	60.0	50.0	10.0	52.8	0.879	19.0	2.60	6	1.025	2.73		
13	50.0	40.0	10.0	64.1	1.068	19.0	2.68	8	1.025	2.75		
14	50.0	40.0	10.0	64.2	1.070	19.0	2.68	8	1.025	2.75		
15	50.0	40.0	10.0	64.2	1.070	19.0	2.68	8	1.025	2.75		
Perm, k _T (7)) = 60 * L/t	* r ² /R ² * ln(h1	ı/h2) = 60* L	/(5) * r ² //	R ² * In((2	2)/(3))		AVERAC	GE k ₂₀ (in/hr):	3.08		
Head, h (4)	= (2) - (3)	Perm. k 20 (9	a) = (7)*(8)				SOIL PF	ERMEABI	LITY CLASS:	K3		

Soil Permeability Classes

Con I Chinoability Clacco	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

Remarks

⁻ Some localized gaps in soil due to gravel pieces and organic matter

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kaine	er	MC #:	19000649A					
Project:	483 and 48	Date:	September 11, 2020						
Boring/Sam	ple#or De	Depth:	30"						
Visual Description of Soil (USCS): Brown red silty/clayey SAND with gravel and trace organics									
Technician:	K. Perry	% of Max Dry Density	Opt. Moisture (%)						
Initial Speci	men Data:				-	-	<u>-</u>		
Sample Type Undisturbed	~	Water Content (%)	Length, L (in)	Diameter (in)	Wet Density (pcf)	Dry Density (pcf)			
Re-Compact	ed 🗆	22.7	4.83	2.875	123.5	100.6			
	Rac	lius of Burett	e, r: 0.3141	in	Rac	lius of Soil Specimen, R:	1.4375 in		

TEST DATA

1	2	3	4		5	6	7	8	9
Trial No.	Burette F	Readings	Head, h	Tim	ne, t	Temp, T	Permeability at	Temp	Permeability at
THAI INO.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	4.2	0.069	19.7	23.52	1.008	23.70
2	90.0	80.0	10.0	4.3	0.071	19.7	23.03	1.008	23.20
3	90.0	80.0	10.0	4.3	0.071	19.7	22.92	1.008	23.09
4	80.0	70.0	10.0	5.8	0.096	19.7	19.30	1.008	19.44
5	80.0	70.0	10.0	5.9	0.098	19.7	18.93	1.008	19.08
6	80.0	70.0	10.0	5.8	0.097	19.7	19.16	1.008	19.31
7	70.0	60.0	10.0	7.8	0.130	19.7	16.46	1.008	16.59
8	70.0	60.0	10.0	8.0	0.133	19.7	16.01	1.008	16.13
9	70.0	60.0	10.0	8.2	0.136	19.7	15.66	1.008	15.78
10	60.0	50.0	10.0	10.0	0.167	19.7	15.15	1.008	15.26
11	60.0	50.0	10.0	10.3	0.172	19.7	14.65	1.008	14.76
12	60.0	50.0	10.0	10.2	0.171	19.7	14.81	1.008	14.92
13	50.0	40.0	10.0	14.3	0.239	19.7	12.96	1.008	13.05
14	50.0	40.0	10.0	14.1	0.235	19.7	13.16	1.008	13.26
15	50.0	40.0	10.0	14.7	0.245	19.7	12.60	1.008	12.69

Perm, $\mathbf{k}_{\mathsf{T}}(7) = 60 \, {}^{\star} \, {}^{\mathsf{L}/\mathsf{t}} \, {}^{\star} \, {}^{\mathsf{2}/\mathsf{R}^{2 \star}} \, \ln(h1/h2) = 60 \, {}^{\star} \, {}^{\mathsf{L}/(5)} \, {}^{\star} \, {}^{\mathsf{2}/\mathsf{R}^{2 \star}} \, \ln((2)/(3))$

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

AVERAGE k₂₀ (in/hr): 17.35
SOIL PERMEABILITY CLASS: K4

Soil Permeability Classes

Con i Cimoabinty Ciacocc	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

- Localized void along sample wall but did not extend full length of sample.

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulfing.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kaine	r		MC #:	19000649A					
Project:	483 and 485	5 Elizabeth A	venue, Frank	lin Township, NJ		Date:	September 11, 2020			
Boring/Sam	Boring/Sample # or Descrip./Location: TP-1B Depth:									
Visual Descr	Visual Description of Soil (USCS): Brown red silty/clayey SAND with gravel									
Technician:	K. Perry		Max Dry Density (pcf)	% of Max Dry Density	Opt. Moisture (%)					
Initial Speci	men Data:									
Sample Type Undisturbed		Water Content (%)	Length, L (in)	Diameter (in)	Wet Density (pcf)	Dry Density (pcf)				
Re-Compacto	ed 🗆	25.5	5.04	2.875	125.0	99.6				
	lius of Soil Specimen, R:	1.4375 in								

TEST DATA

1	2	3	4	,	5	6	7	8	9
Trial No.	Burette I	Readings	Head, h	Time, t		Temp, T	Permeability at	Temp	Permeability at
mai No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	16.1	0.268	19.6	6.34	1.010	6.40
2	90.0	80.0	10.0	16.2	0.271	19.6	6.28	1.010	6.34
3	90.0	80.0	10.0	16.3	0.271	19.6	6.26	1.010	6.32
4	80.0	70.0	10.0	21.4	0.357	19.4	5.39	1.015	5.47
5	80.0	70.0	10.0	21.4	0.356	19.4	5.41	1.015	5.49
6	80.0	70.0	10.0	21.4	0.357	19.4	5.39	1.015	5.47
7	70.0	60.0	10.0	26.4	0.441	19.4	5.05	1.015	5.12
8	70.0	60.0	10.0	26.5	0.441	19.4	5.04	1.015	5.12
9	70.0	60.0	10.0	26.5	0.442	19.4	5.03	1.015	5.11
10	60.0	50.0	10.0	31.4	0.523	19.3	5.03	1.018	5.12
11	60.0	50.0	10.0	31.2	0.520	19.3	5.05	1.018	5.14
12	60.0	50.0	10.0	31.3	0.521	19.3	5.05	1.018	5.13
13	50.0	40.0	10.0	39.4	0.656	19.2	4.91	1.020	5.00
14	50.0	40.0	10.0	39.2	0.654	19.2	4.92	1.020	5.02
15	50.0	40.0	10.0	39.4	0.656	19.2	4.91	1.020	5.00

Perm, $\mathbf{k}_{T}(7) = 60 * L/t * r^{2}/R^{2}* \ln(h1/h2) = 60 * L/(5) * r^{2}/R^{2}* \ln((2)/(3))$

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

AVERA	GE k ₂₀ (in/hr):	5.42
SOIL PERMEABI	LITY CLASS:	К3

Soil Permeability Classes

Con I Chinoability Clacco	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

⁻ Localized void along sample wall but did not extend full length of sample.

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Samp	ple # or Desc	Depth:	6"							
Visual Descr	ription of So	il (USCS):	Brown silty/o	clayey SA	ND with	gravel and tra	ace organics			
Technician:	K Perry			Proc	or Data:	Max Dry D	ensity (ncf)	% of Max	Dry Density	Opt. Moisture (%)
T centifician.	IX. I City			. 1100	or Duta.		- (per)	70 01 17142	-	-
Initial Specia	men Data:									
Sample Type		Water	Length, L	Diame	ter (in)	Wet Den	sity (pcf)	Drv De	ensity (pcf)	
Undisturbed	ed \square	Content (%)	(in) 5.02		375		0.6		• •	
Re-Compacte	ed 🗀	27.5	3.02	2.0	5/3	110	0.0	•	86.8	
	Radi	us of Burett	e, r: 0.3141	in			Rad	lius of Soil	Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4		5	6	7		8	9
Trial Na		Readings	Head, h	Tim	ne, t	Temp, T	Permeab	ility at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	12.8	0.213	18.7	7.9	7	1.033	8.23
2	90.0	80.0	10.0	12.8	0.213	18.7	7.9	7	1.033	8.23
3	90.0	80.0	10.0	12.8	0.214	18.7	7.9	3	1.033	8.19
4	80.0	70.0	10.0	16.1	0.268	18.7	7.1	8	1.033	7.41
5	80.0	70.0	10.0	16.2	0.269	18.7	7.1	3	1.033	7.37
6	80.0	70.0	10.0	16.2	0.269	18.7	7.1	4	1.033	7.37
7	70.0	60.0	10.0	19.4	0.323	18.9	6.8	7	1.028	7.06
8	70.0	60.0	10.0	19.4	0.323	18.9	6.8	7	1.028	7.06
9	70.0	60.0	10.0	19.4	0.324	18.9	6.8	5	1.028	7.04
10	60.0	50.0	10.0	23.2	0.387	18.9	6.7	8	1.028	6.96
11	60.0	50.0	10.0	23.3	0.388	18.9	6.7	6	1.028	6.95
12	60.0	50.0	10.0	23.3	0.389	18.9	6.7	5	1.028	6.94
13	50.0	40.0	10.0	30.6	0.510	19.0	6.3	0	1.025	6.45
14	50.0	40.0	10.0	30.6	0.509	19.0	6.3	0	1.025	6.46
15	50.0	40.0	10.0	30.6	0.510	19.0	6.3	0	1.025	6.46
Perm, k _T (7)) = 60 * L/t [*]	* r ² /R ² * ln(h	1/h2) = 60* L	_/(5) * r ² /	R ² * In((2)/(3))		AVERAG	6E k ₂₀ (in/hr):	7.21
Head, h (4)	= (2) - (3); I	Perm, k ₂₀ (9	θ) = (7)*(8)				SOIL PE	RMEABIL	LITY CLASS:	K4
Soil Perme: > 20 inches 6 - 20 in/hr 2 - 6 in/hr 0.6 - 2 in/hr 0.2 - 0.6 in/hr	per hour (ir		K5 K4 K3 K2 K1			·				

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple # or Desc	Depth:	6"							
Visual Desci	ription of So	il (USCS):	Brown silty/o	clayey SA	ND with	gravel and tr	ace organics			
Technician:	K. Perry			Proct	tor Data:	Max Dry D	ensity (pcf)	% of Max	Dry Density	Opt. Moisture (%)
				•					-	-
Initial Specia		XX7 .	I amath I	1			<u> </u>		1	
Sample Type Undisturbed	~	Water Content (%)	Length, L (in)	Diame	ter (in)	Wet Den	sity (pcf)	Dry Der	nsity (pcf)	
Re-Compacte		30.9	4.90	2.8	375	11	1.6	8	5.3	
•		us of Burett	e. r: 0.3141	in			Rad	ius of Soil S	Specimen, R:	1.4375 in
			-, - · <u>- · · · · · · · · · · · · · · · · </u>	•	TEST	DATA			· • • · · · · · · · · · · · · · · · ·	
			4	1						
1	2 Burette l	3 Readings	4		5 ne, t	6 Temp, T	7 Permeab	ility at	8 Tomp	9 Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	Head, h (cm)	Sec	Min	(°C)	T°C,	-	Temp Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	29.0	0.484	18.7	3.4		1.033	3.52
2	90.0	80.0	10.0	29.9	0.498	18.7	3.3		1.033	3.43
3	90.0	80.0	10.0	29.8	0.497	18.7	3.3		1.033	3.43
4	80.0	70.0	10.0	37.2	0.620	18.9	3.02		1.028	3.10
5	80.0	70.0	10.0	37.2	0.621	18.9	3.02		1.028	3.10
6	80.0	70.0	10.0	37.3	0.622	18.9	3.0		1.028	3.10
7	70.0	60.0	10.0	54.6	0.909	18.6	2.3	3	1.036	2.46
8	70.0	60.0	10.0	54.6	0.910	18.6	2.3	3	1.036	2.46
9	70.0	60.0	10.0	54.6	0.909	18.6	2.3	3	1.036	2.46
10	60.0	50.0	10.0	64.4	1.074	18.5	2.3	3	1.038	2.47
11	60.0	50.0	10.0	64.5	1.075	18.5	2.3	3	1.038	2.47
12	60.0	50.0	10.0	64.5	1.076	18.5	2.3	3	1.038	2.47
13	50.0	40.0	10.0	93.9	1.565	18.4	2.00	0	1.041	2.08
14	50.0	40.0	10.0	93.9	1.565	18.4	2.00)	1.041	2.08
15	50.0	40.0	10.0	94.0	1.566	18.4	2.00)	1.041	2.08
Perm, k _T (7) = 60 * L/t	* r ² /R ² * ln(h1	I/h2) = 60* L	_/(5) * r ² /	R ² * In((2)/(3))		AVERAG	E k ₂₀ (in/hr):	2.71
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	$(7)^*(8)$				SOIL PE	RMEABIL	ITY CLASS:	К3
Soil Perme						•				
> 20 inches	per hour (ir	n/hr)	K5							
6 - 20 in/hr 2 - 6 in/hr			K4 K3							
0.6 - 2 in/hr			K2							
0.2 - 0.6 in/h	nr		K1							

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple # or Desc	crip./Locatio	n: TP-3A						Depth:	5"
Visual Descr	ription of So	il (USCS):	Brown red si	lty/clayey	/ SAND w	ith gravel an	ıd trace organ	ics		
Technician:	K Perry			Proct	tor Data:	Max Dry D	ensity (pcf)	% of Max	Dry Density	Opt. Moisture (%)
	11.1011				.01 2		-	,, , , , , , , , , , , , , , , , , , , ,	-	-
Initial Specia				1						
Sample Type Undisturbed	✓	Water	Length, L	Diame	ter (in)	Wet Den	sity (pcf)	Dry De	ensity (pcf)	
Re-Compacte		Content (%) 17.9	(in) 4.81	2.8	375	10	7.1	(90.9	
re compact					3,0	10	<u> </u>			
	Radi	us of Burett	e, r: <u>0.3141</u>	in			Rad	ius of Soil	Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4	;	5	6	7		8	9
Trial No.	Burette I	Readings	Head, h		ne, t	Temp, T	Permeab	-	Temp	Permeability at
maino.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,		Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	62.7	1.045	19.0	1.5	5	1.025	1.59
2	90.0	80.0	10.0	61.8	1.029	19.0	1.5	8	1.025	1.62
3	90.0	80.0	10.0	62.8	1.046	19.0	1.5	5	1.025	1.59
4	80.0	70.0	10.0	84.3	1.404	18.9	1.3	1	1.028	1.35
5	80.0	70.0	10.0	82.1	1.369	18.9	1.3	4	1.028	1.38
6	80.0	70.0	10.0	83.4	1.390	18.9	1.3	2	1.028	1.36
7	70.0	60.0	10.0	88.7	1.478	18.8	1.4	4	1.030	1.48
8	70.0	60.0	10.0	79.2	1.320	18.8	1.6	1	1.030	1.66
9	70.0	60.0	10.0	79.4	1.324	18.8	1.6	0	1.030	1.65
10	60.0	50.0	10.0	93.9	1.565	18.7	1.6	1	1.033	1.66
11	60.0	50.0	10.0	93.3	1.555	18.7	1.6	2	1.033	1.67
12	60.0	50.0	10.0	92.5	1.541	18.7	1.6	3	1.033	1.68
13	50.0	40.0	10.0	118.6	1.977	18.6	1.5	6	1.036	1.61
14	50.0	40.0	10.0	116.1	1.935	18.6	1.5	9	1.036	1.65
15	50.0	40.0	10.0	117.5	1.959	18.6	1.5	7	1.036	1.63
Perm, k _T (7) = 60 * L/t	* r ² /R ² * ln(h1	I/h2) = 60* L	_/(5) * r ² /	R ² * In((2)/(3))		AVERAG	6E k ₂₀ (in/hr):	1.57
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	$(7)^*(8)$				SOIL PE	RMEABIL	LITY CLASS:	K2
Soil Perme			VE							
> 20 inches 6 - 20 in/hr	per nour (ir	1/11F)	K5 K4							
2 - 6 in/hr			K4 K3							
0.6 - 2 in/hr			K2							
0.2 - 0.6 in/h	nr		K1							

Engineers **Planners** Surveyors Landscape Architects Environmental Scientists

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

> T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer								MC #:	19000649A
Project:	483 and 485	Date:	September 11, 2020							
Boring/Sam	ple# or Des	crip./Locatio	on: <u>TP-3B</u>						Depth:	5"
Visual Descr	ription of So	il (USCS):	Brown red si	ilty/clayey	y SAND v	vith gravel an	d trace organ	nics		
Technician:	K. Perry			Proc	tor Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)
Initial Speci	men Data:						_		-	-
Sample Type Undisturbed	ole Type: Water Length, L			Diame	eter (in)	Wet Den	Wet Density (pcf) Dry		ensity (pcf)	
Re-Compact	ed 🗆	18.7	4.85	2.8	875	108.4			91.3	
	Radi	us of Burett	e, r: 0.3141	in			Rad	lius of Soi	l Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4	,	5	6	7		8	9
Trial No	Burette I	Readings	Head, h	Tim	ne, t	Temp, T	Permeal	oility at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k_{T}	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	2.2	0.037	19.6	44.8	36	1.010	45.31
2	90.0	80.0	10.0	2.2	0.036	19.6	45.4	18	1.010	45.94
3	90.0	80.0	10.0	2.2	0.037	19.6	44.2	26	1.010	44.70
4	80.0	70.0	10.0	2.5	0.041	19.5	45.0)9	1.013	45.66
5	80.0	70.0	10.0	2.4	0.039	19.5	47.4	10	1.013	47.99
6	80.0	70.0	10.0	2.4	0.040	19.5	46.2	22	1.013	46.80
7	70.0	60.0	10.0	2.9	0.049	19.4	44.1	19	1.015	44.85
8	70.0	60.0	10.0	2.8	0.047	19.4	45.2	28	1.015	45.96

0.048

0.053

0.052

0.053

0.062

0.062

0.061

2.9

3.2

3.1

3.2

3.7

3.7

3.7

19.4

19.0

19.0

19.0

19.0

19.0

19.0

Perm, $\mathbf{k}_{\mathsf{T}}(7) = 60 \, {}^{\star} \, {}^{\mathsf{L}/\mathsf{t}} \, {}^{\star} \, {}^{\mathsf{2}/\mathsf{R}^{2}} \, {}^{\mathsf{1}} \, {}^{\mathsf{n}} \, {}$

10.0

10.0

10.0

10.0

10.0

10.0

10.0

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

60.0

50.0

50.0

50.0

40.0

40.0

40.0

AVERAGE k ₂₀ (in/hr):	47.7
SOIL PERMEABILITY CLASS:	K5

1.015

1.025

1.025

1.025

1.025

1.025

1.025

44.80

48.28

48.59

47.67

50.04

50.31

50.58

Soil Permeability Classes

Con I Chileability Classes	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

70.0

60.0

60.0

60.0

50.0

50.0

50.0

Remarks

9

10

11

12

13

14

15

- Localized void along sample wall but did not extend full length of sample.
- Sample was very loose inside of the tube. Sample able to slide up and down within the tube during preparation.

Plate No.: TP-8

45.48

49.50

49.81

48.88

51.30

51.57

51.85

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	r	MC #:	19000649A						
Project:	483 and 485		Date:	September 11, 2020						
Boring/Sam	ple # or Des	Depth:	6"							
Visual Descr	ription of So	oil (USCS):	Brown red si	ilty/clayey	/ SAND w	vith gravel an	nd trace organ	iics		
Technician:	K. Perry			Proc	tor Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)
T 1.1 1 G	-						-		-	-
Initial Specimen Data: Sample Type: Undisturbed		Water Content (%)	Length, L	Diameter (in)		Wet Den	nsity (pcf) Dry I		ensity (pcf)	
Re-Compacted		17.0	4.37	2.8	375	12	7.2		108.7	
	Radi	ius of Burett	e, r: 0.3141	in			Rad	lius of Soi	l Specimen, R:	1.4375 in
					TEST	T DATA				
1	2	3	4	,	5	6	7		8	9
Trial No.	Burette	Readings	Head, h	Tin	ne, t	Temp, T	Permeat	oility at	Temp	Permeability at
Thai No.	h_1 (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k_T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	4.6	0.076	19.0	19.3	38	1.025	19.86
2	90.0	80.0	10.0	4.7	0.078	19.0	19.0	00	1.025	19.48
3	90.0	80.0	10.0	4.7	0.079	19.0	18.7	76	1.025	19.23
4	80.0	70.0	10.0	8.2	0.137	19.0	12.2	23	1.025	12.54
5	80.0	70.0	10.0	8.2	0.137	19.0	12.2	26	1.025	12.57
6	80.0	70.0	10.0	8.3	0.138	19.0	12.1	17	1.025	12.48
7	70.0	60.0	10.0	9.2	0.153	18.9	12.6	67	1.028	13.02

0.154

0.153

0.169

0.170

0.168

0.216

0.216

0.215

18.9

18.9

18.9

18.9

18.9

18.9

18.9

18.9

9.2

9.2

10.2

10.2

10.1

12.9

13.0

12.9

Perm, k_T (7) = 60 * L/t * r^2/R^2 * ln(h1/h2) = 60* L/(5) * r^2/R^2 * ln((2)/(3))

60.0

60.0

50.0

50.0

50.0

40.0

40.0

40.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

10.0

AVERAGE k₂₀ (in/hr): 14.45

SOIL PERMEABILITY CLASS: K4

1.028

1.028

1.028

1.028

1.028

1.028

1.028

1.028

12.56

12.62

13.50

13.48

13.57

12.97

12.92

12.98

Head, h (4) = (2) - (3); Perm, k_{20} (9) = (7)*(8)

Soil Permeability Classes

Com t Chinicalinity Chacces	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

70.0

70.0

60.0

60.0

60.0

50.0

50.0

50.0

Remarks

8

9

10

11

12

13

14

15

- Large stone at top of sample.

Plate No.: TP-9

12.90

12.97

13.88

13.85

13.95

13.33

13.28

13.34

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A	
Project:	483 and 485	Elizabeth A	Date:	September 11, 2020							
Boring/Sam	ple # or Desc	crip./Locatio	on: TP-4A						Depth:	24"	
Visual Desci	ription of So	il (USCS):	Red brown s	ilty/claye	y SAND v	vith gravel ar	nd trace organ	nics	·		
		,									
Technician:	K. Perry			Proct	tor Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)	
Initial Speci	men Data:						-		-	-	
Sample Type		Water	Length, L	D:	t(:)	Wat Dan	-:4 (6)	D D	:4 (
Undisturbed	Undisturbed Content (%) (in)				eter (in)		sity (pcf)		ensity (pcf)		
Re-Compacte	ed 🗆	21.7	4.50	2.8	375	11'	7.2		96.3		
Radius of Burette, r: 0.3141 in Radius of Soil Specimen, R: 1.4375 in											
					TEST	DATA					
1	2	3	4	1	5	6	7		8	9	
		Readings	Head, h		ne, t	Temp, T	Permeab	ility at	Temp	Permeability at	
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k _T	Correc.	20°C, k ₂₀	
1	90.0	80.0	10.0	7.8	0.129	19.6	11.7	' 5	1.010	11.87	
2	90.0	80.0	10.0	7.7	0.128	19.6	11.8	6	1.010	11.98	
3	90.0	80.0	10.0	7.7	0.129	19.6	11.8	30	1.010	11.92	
4	80.0	70.0	10.0	8.6	0.144	19.5	11.9	7	1.013	12.12	
5	80.0	70.0	10.0	8.6	0.144	19.5	12.0	0	1.013	12.15	
6	80.0	70.0	10.0	8.6	0.144	19.5	11.9	7	1.013	12.12	
7	70.0	60.0	10.0	9.9	0.165	19.3	12.0	8	1.018	12.29	
8	70.0	60.0	10.0	9.8	0.164	19.3	12.1	5	1.018	12.37	
9	70.0	60.0	10.0	9.9	0.165	19.3	12.0	16	1.018	12.27	
10	60.0	50.0	10.0	11.2	0.186	19.2	12.6	64	1.020	12.89	
11	60.0	50.0	10.0	11.2	0.187	19.2	12.6	0	1.020	12.86	
12	60.0	50.0	10.0	11.1	0.186	19.2	12.6	57	1.020	12.93	
13	50.0	40.0	10.0	13.3	0.222	19.1	12.9	14	1.023	13.23	
14	50.0	40.0	10.0	13.4	0.224	19.1	12.8	34	1.023	13.13	
15	50.0	40.0	10.0	13.4	0.223	19.1	12.8	9	1.023	13.18	
Perm, k _T (7) = 60 * L/t	* r ² /R ² * ln(h <i>1</i>	1/h2) = 60* L	_/(5) * r ² /	R ² * In((2	2)/(3))		AVERAC	GE k ₂₀ (in/hr):	12.49	
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	θ) = (7)*(8)				SOIL PE	RMEABI	LITY CLASS:	K4	
Soil Perme						•					
> 20 inches	per hour (ir	n/hr)	K5								
6 - 20 in/hr 2 - 6 in/hr			K4 K3								
0.6 - 2 in/hr			K2								
0.2 - 0.6 in/h	nr		K1								

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Samp	ple # or Desc	crip./Locatio	on: <u>TP-7A</u>						Depth:	6"
Visual Descr	ription of So	il (USCS):	Red brown s	ilty/claye	y SAND v	vith gravel ar	nd trace organ	nics		
Technician:	V Darry			Proc	or Data:	Max Dry D	ensity (ncf)	% of May	x Dry Density	Opt. Moisture (%)
i eciliician.	K. I City			. 1100	or Data.	Wiax Diy D	-	/0 OI IVIA	-	-
Initial Specia	men Data:									•
Sample Type		Water	Length, L	Diame	ter (in)	Wet Den	sity (pcf)	Drv De	ensity (pcf)	
Undisturbed	ed \square	Content (%)	(in) 5.01		375	10	• •	•	88.8	
Re-Compacte	ed L	20.1	3.01	2.0	5/3	10	0.7		00.0	
	Radi	us of Burett	e, r: <u>0.3141</u>	in			Rad	lius of Soil	Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4		5	6	7		8	9
Trial No	Burette l	Readings	Head, h	Tim	ne, t	Temp, T	Permeab	ility at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	9.5	0.159	19.0	10.6	65	1.025	10.92
2	90.0	80.0	10.0	9.6	0.160	19.0	10.6	0	1.025	10.86
3	90.0	80.0	10.0	9.6	0.159	19.0	10.6	51	1.025	10.87
4	80.0	70.0	10.0	12.7	0.212	19.0	9.0	4	1.025	9.27
5	80.0	70.0	10.0	12.8	0.213	19.0	9.0	2	1.025	9.24
6	80.0	70.0	10.0	12.8	0.214	19.0	8.9	7	1.025	9.20
7	70.0	60.0	10.0	16.6	0.277	19.0	7.9	9	1.025	8.20
8	70.0	60.0	10.0	16.8	0.280	19.0	7.8	9	1.025	8.09
9	70.0	60.0	10.0	16.8	0.281	19.0	7.8	8	1.025	8.08
10	60.0	50.0	10.0	18.3	0.305	18.9	8.5	7	1.028	8.81
11	60.0	50.0	10.0	18.3	0.306	18.9	8.5	6	1.028	8.80
12	60.0	50.0	10.0	18.4	0.307	18.9	8.5	4	1.028	8.77
13	50.0	40.0	10.0	21.2	0.353	18.9	9.0	7	1.028	9.32
14	50.0	40.0	10.0	21.2	0.354	18.9	9.0	6	1.028	9.31
15	50.0	40.0	10.0	21.2	0.353	18.9	9.0	8	1.028	9.33
Perm, k _T (7)	= 60 * L/t	* r ² /R ² * ln(h <i>*</i>	1/h2) = 60* L	_/(5) * r ² /	R ² * In((2)/(3))		AVERAC	GE k ₂₀ (in/hr):	9.27
Head, h (4)	= (2) - (3); I	Perm, k ₂₀ (9	θ) = (7)*(8)				SOIL PE	RMEABI	LITY CLASS:	K4
Soil Perme > 20 inches 6 - 20 in/hr 2 - 6 in/hr 0.6 - 2 in/hr 0.2 - 0.6 in/h	per hour (ir		K5 K4 K3 K2 K1			·				

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple # or Desc	crip./Locatio	on: TP-7B						Depth:	6"
Visual Desci	ription of So	il (USCS):	Red brown s	ilty/claye	y SAND v	vith gravel ar	nd trace organ	ics		
Technician:	K. Perry			Proct	tor Data:	Max Dry D	Max Dry Density (pcf) % of Max		Dry Density	Opt. Moisture (%)
T 10				•			-		-	-
Initial Speci Sample Type		Water	Length, L	1		-				
Undisturbed				Diame	eter (in)	Wet Den	sity (pcf)	Dry De	ensity (pcf)	
Re-Compacte		20.9	4.87	2.8	375	11-	4.7	9	94.9	
	Radi	us of Burett	e, r: 0.3141	in			Rad	ius of Soil	Specimen, R:	1.4375 in
				•	TEST	DATA			•	
4	2	3	4	I .	5		7		0	9
1		Readings	Head, h		ne, t	6 Temp, T	Permeab	ility at	8 Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	-	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	10.6	0.177	18.6	9.29		1.036	9.62
2	90.0	80.0	10.0	10.6	0.177	18.6	9.30		1.036	9.64
3	90.0	80.0	10.0	10.8	0.179	18.6	9.1		1.036	9.50
4	80.0	70.0	10.0	13.2	0.219	18.5	8.50)	1.038	8.82
5	80.0	70.0	10.0	13.2	0.219	18.5	8.50)	1.038	8.83
6	80.0	70.0	10.0	13.2	0.220	18.5	8.49	9	1.038	8.81
7	70.0	60.0	10.0	15.3	0.254	18.4	8.40	3	1.041	8.81
8	70.0	60.0	10.0	15.2	0.253	18.4	8.5	1	1.041	8.86
9	70.0	60.0	10.0	15.3	0.255	18.4	8.43	3	1.041	8.77
10	60.0	50.0	10.0	18.8	0.314	18.4	8.12	2	1.041	8.45
11	60.0	50.0	10.0	18.8	0.314	18.4	8.1	1	1.041	8.44
12	60.0	50.0	10.0	18.9	0.314	18.4	8.10)	1.041	8.43
13	50.0	40.0	10.0	20.0	0.333	18.4	9.30	6	1.041	9.74
14	50.0	40.0	10.0	20.0	0.333	18.4	9.3	7	1.041	9.75
15	50.0	40.0	10.0	20.0	0.333	18.4	9.3	5	1.041	9.73
Perm, k _T (7) = 60 * L/t	* r ² /R ² * ln(h1	1/h2) = 60* L	_/(5) * r ² /	R ² * In((2)/(3))		AVERAG	SE k ₂₀ (in/hr):	9.08
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	θ) = (7)*(8)				SOIL PE	RMEABIL	LITY CLASS:	K4
Soil Perme			VE							
> 20 inches 6 - 20 in/hr	per nour (Ir	1/111/	K5 K4							
2 - 6 in/hr			K3							
0.6 - 2 in/hr			K2							
0.2 - 0.6 in/l	nr		K1							

Engineers Planners Surveyors Landscape Architects Environmental Scientists 5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

> T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•					MC #:	19000649A		
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple # or Des	Depth:	5"							
Visual Descr	ription of So	il (USCS):	Brown red si	lty/clayey	SAND w	ith gravel				
Technician:	K. Perry			Proc	tor Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)
Initial Speci	men Data:					-	•		-	-
Sample Type Undisturbed		Water Content (%)	Length, L (in)	Diame	ter (in)	Wet Den	Wet Density (pcf)		ensity (pcf)	
Re-Compacte	ed 🗆	23.6	4.88	2.8	375	118	3.3		95.7	
	Radi	us of Burett	e, r: 0.3141	in			Rad	lius of Soi	l Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4		5	6	7		8	9
Trial No.	Burette I	Readings	Head, h	Tim	ne, t	Temp, T	Permeal	oility at	Temp	Permeability at
i i iai ino.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k_T	Correc.	20°C, k ₂₀
4	00.0	00.0	10.0	45.0	0.005	40.0	6.3	2	4 005	6 20

1	2	3	4	;	5	6	7	8	9
Trial No.	Burette F	Readings	Head, h	Tim	ne, t	Temp, T	Permeability at	Temp	Permeability at
mai No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	15.9	0.265	19.0	6.22	1.025	6.38
2	90.0	80.0	10.0	15.7	0.262	19.0	6.28	1.025	6.44
3	90.0	80.0	10.0	15.9	0.265	19.0	6.22	1.025	6.38
4	80.0	70.0	10.0	18.8	0.313	19.0	5.97	1.025	6.12
5	80.0	70.0	10.0	18.8	0.313	19.0	5.95	1.025	6.10
6	80.0	70.0	10.0	18.8	0.314	19.0	5.95	1.025	6.10
7	70.0	60.0	10.0	21.2	0.353	18.9	6.11	1.028	6.28
8	70.0	60.0	10.0	21.4	0.357	18.9	6.04	1.028	6.21
9	70.0	60.0	10.0	21.3	0.355	18.9	6.06	1.028	6.23
10	60.0	50.0	10.0	28.6	0.477	18.8	5.34	1.030	5.51
11	60.0	50.0	10.0	28.6	0.476	18.8	5.35	1.030	5.51
12	60.0	50.0	10.0	28.5	0.475	18.8	5.36	1.030	5.52
13	50.0	40.0	10.0	31.5	0.525	18.7	5.94	1.033	6.13
14	50.0	40.0	10.0	31.4	0.524	18.7	5.95	1.033	6.15
15	50.0	40.0	10.0	31.6	0.526	18.7	5.92	1.033	6.12

Perm, k_T (7) = 60 * L/t * r^2/R^2 * ln(h1/h2) = 60* L/(5) * r^2/R^2 * ln((2)/(3))

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

AVERA	GE k ₂₀ (in/hr):	6.08	
SOIL PERMEABI	LITY CLASS:	K4	

Soil Permeability Classes

Com i crimousinity Ciacocc	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

- Large stone at bottom of sample.

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple # or Des	crip./Locatio	on: TP-9B						Depth:	5"
Visual Desci	ription of So	il (USCS):	Red brown s	ilty/claye	y SAND					
Technician:	K. Perry			Proctor Data: Max Dry Densit		ensity (pcf)	sity (pcf) % of Max Dry Density		Opt. Moisture (%)	
Initial Speci	men Data:						-		-	-
Sample Type Undisturbed	~	Water Content (%)	Length, L (in)		eter (in)		sity (pcf)	•	ensity (pcf)	
Re-Compacte	Compacted 23.0 4.87 2.875 114.4							93.0		
	Radi	us of Burett	e, r: 0.3141	in			Rad	lius of Soi	l Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4		5	6	7		8	9
Trial Na	Burette	Readings	Head, h	Tim	ne, t	Temp, T	Permeab	ility at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k_T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	84.9	1.415	19.2	1.1	6	1.020	1.18
2	90.0	80.0	10.0	84.8	1.413	19.2	1.1	6	1.020	1.19
3	90.0	80.0	10.0	84.9	1.415	19.2	1.1	6	1.020	1.19
4	80.0	70.0	10.0	139.0	2.317	19.1	0.8	0	1.023	0.82
5	80.0	70.0	10.0	138.9	2.315	19.1	0.8	0	1.023	0.82
6	80.0	70.0	10.0	139.2	2.321	19.1	0.8	0	1.023	0.82
7	70.0	60.0	10.0	167.5	2.792	19.0	0.7	7	1.025	0.79
8	70.0	60.0	10.0	167.6	2.793	19.0	0.7	7	1.025	0.79
9	70.0	60.0	10.0	167.6	2.793	19.0	0.7	7	1.025	0.79
10	60.0	50.0	10.0	232.2	3.870	18.7	0.6	6	1.033	0.68
11	60.0	50.0	10.0	232.3	3.871	18.7	0.6	6	1.033	0.68
12	60.0	50.0	10.0	232.3	3.871	18.7	0.6	6	1.033	0.68
13	50.0	40.0	10.0	310.3	5.172	18.7	0.6	0	1.033	0.62
14	50.0	40.0	10.0	310.5	5.174	18.7	0.6	0	1.033	0.62
15	50.0	40.0	10.0	310.4	5.174	18.7	0.6	0	1.033	0.62
Perm, k _T (7) = 60 * L/t	* r ² /R ² * ln(h	1/h2) = 60* L	_/(5) * r ² /	R ² * In((2	2)/(3))		AVERA	GE k ₂₀ (in/hr):	0.82
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	θ) = (7)*(8)				SOIL PE	RMEABI	LITY CLASS:	K2
Soil Perme > 20 inches 6 - 20 in/hr			K5 K4			'				
2 - 6 in/hr			K3							
0.6 - 2 in/hr			K2							
0.2 - 0.6 in/h	nr		K1							

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	:	MC #:	19000649A					
Project:	483 and 485	Elizabeth A	venue, Frankl	in Township, NJ				Date:	September 11, 2020
Boring/Sam	ple#or Des	crip./Locatio	n: <u>TP-10A</u>					Depth:	15"
Visual Desc	ription of So	oil (USCS):	Red brown s	ilty/clayey SAND	with gravel a	nd trace organ	nics		
Technician:	K. Perry			Proctor Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)
Initial Speci	imen Data:					-		-	-
Sample Type Undisturbed	e:	Water Content (%)	Length, L (in)	Diameter (in)	Wet Den	sity (pcf)	Dry D	ensity (pcf)	
Re-Compact	ed 🗆	22.7	4.97	2.875	10	8.8			
	Radi	ius of Burett	e, r: 0.3141	in		Rac	lius of Soi	l Specimen, R:	1.4375 in
				TEST	T DATA				
1	2	3	4	5	6	7		8	9
Trial No.	Burette Readings Hea		Head, h	Time, t	Temp, T	Permeal	oility at	Temp	Permeability at
THAI INU.	h. (cm)	h. (cm)	(cm)	Soc Min	(°C)	T°C	L/	Correc	20°C k

1	2	3	4		5	6	7	8	9
Trial No.	Burette I	Readings	Head, h	Tin	ne, t	Temp, T	Permeability at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	771.7	12.861	20.1	0.13	0.998	0.13
2	90.0	80.0	10.0	773.8	12.896	20.1	0.13	0.998	0.13
3	90.0	80.0	10.0	772.5	12.875	20.1	0.13	0.998	0.13
4	80.0	71.0	9.0	900.0	15.000	20.0	0.11	1.000	0.11
5	70.0	62.5	7.5	900.0	15.000	19.8	0.11	1.005	0.11
6	60.0	55.0	5.0	900.0	15.000	19.7	0.08	1.008	0.08
7	50.0	46.3	3.7	900.0	15.000	19.5	0.07	1.013	0.07

Perm, k_T (7) = $60 \times L/t \times r^2/R^2 \times \ln(h1/h2) = 60 \times L/(5) \times r^2/R^2 \times \ln((2)/(3))$

Head, h (4) = (2) - (3); **Perm**, k_{20} (9) = (7)*(8)

AVERAGE k ₂₀ (in/hr):	0.11	
SOIL PERMEABILITY CLASS:	K0	

Soil Permeability Classes

Remarks

> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Engineers5439 Harding HighwayPlannersMays Landing, NJ 08330SurveyorsT: 800.258.3787Landscape ArchitectsT: 609.625.1700Environmental ScientistsF: 609.625.1798www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kain	er				MC #:	19000649A
Project:	483 and 48	35 Elizabeth A	venue, Frank	lin Township, NJ		Date:	September 11, 2020
Boring/Sam	ple # or De	scrip./Locatio	on: <u>TP-10B</u>			Depth:	15"
Visual Desci	ription of S	Soil (USCS):	Red brown s	ilty/clayey SAND v	with gravel and trace organ	nics	
Technician:	K. Perry			Proctor Data:	Max Dry Density (pcf)	% of Max Dry Density	Opt. Moisture (%)
Initial Speci	men Data:				-	-	-
Sample Type Undisturbed	~	Water Content (%)	Length, L (in)	Diameter (in)	Wet Density (pcf)	Dry Density (pcf)	
Re-Compacte	ed 🗆	18.2	5.07	2.875	111.6	94.4	
	Rac	dius of Burett	e, r: 0.3141	in	Rac	lius of Soil Specimen, R:	1.4375 in

TEST DATA

1	2	3	4		5	6	7	8	9
Trial No.	Burette F	Readings	Head, h	Tim	ne, t	Temp, T	Permeability at	Temp	Permeability at
IIIai NO.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	21.6	0.360	19.0	4.76	1.025	4.88
2	90.0	80.0	10.0	21.4	0.357	19.0	4.80	1.025	4.92
3	90.0	80.0	10.0	21.5	0.358	19.0	4.78	1.025	4.90
4	80.0	70.0	10.0	25.9	0.432	18.7	4.50	1.033	4.64
5	80.0	70.0	10.0	25.9	0.432	18.7	4.49	1.033	4.64
6	80.0	70.0	10.0	25.7	0.428	18.7	4.53	1.033	4.68
7	70.0	60.0	10.0	30.7	0.512	18.6	4.37	1.036	4.53
8	70.0	60.0	10.0	30.9	0.515	18.6	4.35	1.036	4.51
9	70.0	60.0	10.0	30.8	0.514	18.6	4.36	1.036	4.51
10	60.0	50.0	10.0	41.5	0.692	18.6	3.83	1.036	3.97
11	60.0	50.0	10.0	41.6	0.693	18.6	3.82	1.036	3.96
12	60.0	50.0	10.0	41.5	0.691	18.6	3.83	1.036	3.97
13	50.0	40.0	10.0	58.7	0.978	18.4	3.32	1.041	3.45
14	50.0	40.0	10.0	58.7	0.978	18.4	3.31	1.041	3.45
15	50.0	40.0	10.0	58.7	0.979	18.4	3.31	1.041	3.45

Perm, $\mathbf{k}_{\mathsf{T}}(7) = 60 \, {}^{\star} \, {}^{\mathsf{L}/\mathsf{t}} \, {}^{\star} \, {}^{\mathsf{2}/\mathsf{R}^{2}} \, {}^{\mathsf{1}} \, {}^{\mathsf{n}} \, {}$

Head, h (4) = (2) - (3); **Perm**, k_{20} (9) = (7)*(8)

AVERAGE k₂₀ (in/hr): 4.30
SOIL PERMEABILITY CLASS: K3

Soil Permeability Classes

Con i cimoadinty Ciacco	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

⁻ Large localized voids along inner tube wall but did not extend full length of sample.

John Kainer

Client:

Engineers Planners Surveyors Landscape Architects Environmental Scientists 5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787

> T: 609.625.1700 F: 609.625.1798

www.maserconsulting.com

MC #: 19000649A

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Project: 483 and 485 Elizabeth Avenue, Franklin Township, NJ Date: September 11, 20											
Boring/Samp	ple # or Des	crip./Locatio	n: <u>TP-11A</u>						Depth:	8"	
Visual Descr	iption of So	oil (USCS):	Red brown si	ilty/claye	y SAND v	vith gravel ar	nd trace organ	nics			
Technician:	K Perry			Proc	or Data	Max Dry D	ensity (ncf)	% of Ma	x Dry Density	Opt. Moisture (%)	
Technician.	IX. I City			110001 2444		Mux Diy D	-	70 OI 1 11	-	-	
Initial Specia	men Data:				!						
Sample Type: Water Length, L			Length, L	Diame	ter (in)	Wet Den	sity (ncf)	Dry D	ensity (pcf)		
Undisturbed Content (%) (in)			` ′			·	• • •				
Re-Compacte	ed 🗆	21.0	4.71	2.8	375	11:	5.9		95.8		
	Radi	us of Burette	e, r: 0.3141	in			Rad	lius of Soi	l Specimen, R:	1.4375 in	
					TEST	DATA					
1	2	3	4		5	6	7		8	9	
Trial No.	Burette I	Readings	Head, h	Tim	ne, t	Temp, T	Permeal	oility at	Temp	Permeability at	
THAI NO.	h_1 (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k_T	Correc.	20°C, k ₂₀	
1	90.0	80.0	10.0	4.9	0.082	19.2	19.4	17	1.020	19.86	
2	90.0	80.0	10.0	4.9	0.082	19.2	19.3	39	1.020	19.78	
3	90.0	80.0	10.0	5.0	0.083	19.2	19.2	20	1.020	19.58	
4	80.0	70.0	10.0	5.2	0.086	19.1	20.9	96	1.023	21.44	
5	80.0	70.0	10.0	5.2	0.087	19.1	20.8	30	1.023	21.27	
6	80.0	70.0	10.0	5.1	0.086	19.1	21.0)9	1.023	21.56	
7	70.0	60.0	10.0	6.1	0.102	19.1	20.3	37	1.023	20.83	
8	70.0	60.0	10.0	6.6	0.109	19.1	19.0	06	1.023	19.50	
9	70.0	60.0	10.0	6.6	0.110	19.1	18.9	95	1.023	19.38	
10	60.0	50.0	10.0	6.9	0.115	19.0	21.4	40	1.025	21.94	
11	60.0	50.0	10.0	6.9	0.116	19.0	21.3	31	1.025	21.85	
12	60.0	50.0	10.0	7.0	0.116	19.0	21.1	19	1.025	21.72	
13	50.0	40.0	10.0	8.2	0.136	19.0	22.1	15	1.025	22.71	
14	50.0	40.0	10.0	8.3	0.138	19.0	21.8	36	1.025	22.41	
15	50.0	40.0	10.0	8.2	0.137	19.0	21.9	96	1.025	22.52	
Perm, k _T (7)					AVERAGE k ₂₀ (in/hr):			21.09			
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	$(7)^*(8)$			SOIL PI	ERMEABI	LITY CLASS:	K5		

Soil Permeability Classes

Con i Cimousinty Ciacocc	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

- Localized void along sample wall but did not extend full length of sample.
- Sample was very loose inside of the tube. Sample able to slide up and down within the tube during preparation.

Remarks

K0

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainer	•							MC #:	19000649A
Project:	483 and 485	Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple # or Desc	crip./Locatio	on: TP-11B						Depth:	8"
Visual Desci	ription of So	il (USCS):	Red brown s	ilty/claye	y SAND v	vith gravel ar	nd trace organ	nics		
Technician:	K Perry			Proct	tor Data:	Max Dry D	ensity (pcf)	% of Max	Dry Density	Opt. Moisture (%)
	11.1 011)				.01 24040		-	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	-
Initial Speci							•			
Sample Type: Water Length, L		Diame	eter (in)	Wet Den	sity (pcf)	Drv De	ensity (pcf)			
Undisturbed Content (%) (in) Re-Compacted 22.5 4.72				` ′				• • •		
Re-Compacte	ea 🗀	22.5	4.72	2.0	375	10	9.9	•	89.7	
	Radi	us of Burett	e, r: 0.3141	in			Rad	ius of Soil	Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4		5	6	7		8	9
		Readings	Head, h		ne, t	Temp, T	Permeab	ility at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	8.6	0.144	19.6	11.0	16	1.010	11.17
2	90.0	80.0	10.0	8.6	0.143	19.6	11.1	0	1.010	11.21
3	90.0	80.0	10.0	8.7	0.146	19.6	10.9)4	1.010	11.05
4	80.0	70.0	10.0	9.7	0.161	19.4	11.2	22	1.015	11.39
5	80.0	70.0	10.0	9.7	0.161	19.4	11.2	22	1.015	11.39
6	80.0	70.0	10.0	9.6	0.160	19.4	11.2	25	1.015	11.42
7	70.0	60.0	10.0	11.2	0.187	19.3	11.1	4	1.018	11.33
8	70.0	60.0	10.0	11.4	0.189	19.3	11.0	0	1.018	11.19
9	70.0	60.0	10.0	11.3	0.188	19.3	11.0	9	1.018	11.28
10	60.0	50.0	10.0	12.9	0.216	19.2	11.4	.3	1.020	11.66
11	60.0	50.0	10.0	13.0	0.216	19.2	11.3	9	1.020	11.61
12	60.0	50.0	10.0	13.0	0.216	19.2	11.3	9	1.020	11.62
13	50.0	40.0	10.0	13.3	0.222	19.2	13.5	6	1.020	13.83
14	50.0	40.0	10.0	13.2	0.221	19.2	13.6	57	1.020	13.95
15	50.0	40.0	10.0	13.3	0.221	19.2	13.6	55	1.020	13.93
Perm, k _T (7) = 60 * L/t	* r ² /R ² * ln(h1	1/h2) = 60* L	_/(5) * r ² /	R ² * In((2)/(3))		AVERAG	SE k ₂₀ (in/hr):	11.87
Head, h (4)	= (2) - (3);	Perm, k ₂₀ (9	θ) = (7)*(8)				SOIL PE	RMEABIL	LITY CLASS:	K4
Soil Perme > 20 inches 6 - 20 in/hr			K5 K4			•				
2 - 6 in/hr			K3							
0.6 - 2 in/hr			K2							
0.2 - 0.6 in/l	٦r		K1							

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kaine	r				MC #:	19000649A
Project:	483 and 485	5 Elizabeth A	venue, Frank	lin Township, NJ		Date:	September 11, 2020
Boring/Sam	ple # or Des	crip./Locatio	n: TP-12A			Depth:	12"
Visual Descr	ription of So	oil (USCS):	Brown red si	lty/clayey SAND w	vith gravel and trace organ	nics	
Technician:	V Darry	•		Proctor Data:	Max Dry Density (pcf)	% of Max Dry Density	Opt. Moisture (%)
i ecimician.	K. I City			Troctor Data.	-	-	-
Initial Specia	men Data:						
Sample Type	:	Water	Length, L	Diameter (in)	Wet Density (pcf)	Dry Dancity (nof)	
	Content (%)	(in)	Diameter (III)	wet Delisity (pci)	Dry Density (pcf)		
Re-Compacte	ed 🗆	12.0	4.66	2.875	75.4	67.3	
	Radi	ius of Burette	r: 03141	in	Rad	lius of Soil Specimen, R:	1 4375 in

TEST DATA

1	2	3	4	;	5	6	7	8	9
Trial No.	Burette I	Readings	Head, h	Tin	ne, t	Temp, T	Permeability at	Temp	Permeability at
mai No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	5.2	0.087	19.1	18.06	1.023	18.47
2	90.0	80.0	10.0	5.3	0.088	19.1	17.96	1.023	18.37
3	90.0	80.0	10.0	5.3	0.088	19.1	17.89	1.023	18.30
4	80.0	70.0	10.0	6.7	0.112	19.0	15.98	1.025	16.38
5	80.0	70.0	10.0	6.7	0.112	19.0	15.91	1.025	16.31
6	80.0	70.0	10.0	6.8	0.113	19.0	15.74	1.025	16.14
7	70.0	60.0	10.0	8.4	0.140	19.0	14.71	1.025	15.08
8	70.0	60.0	10.0	8.4	0.139	19.0	14.78	1.025	15.15
9	70.0	60.0	10.0	8.4	0.141	19.0	14.62	1.025	14.99
10	60.0	50.0	10.0	9.5	0.158	18.9	15.40	1.028	15.83
11	60.0	50.0	10.0	9.4	0.157	18.9	15.48	1.028	15.91
12	60.0	50.0	10.0	9.5	0.158	18.9	15.41	1.028	15.84
13	50.0	40.0	10.0	12.9	0.215	18.9	13.88	1.028	14.27
14	50.0	40.0	10.0	12.9	0.215	18.9	13.86	1.028	14.24
15	50.0	40.0	10.0	12.8	0.213	18.9	13.98	1.028	14.37

Perm, $\mathbf{k}_{\mathsf{T}}(7) = 60 \, {}^{*}\,\mathsf{L/t} \, {}^{*}\, r^2/\mathsf{R}^{2*}\, \ln(h1/h2) = 60 \, {}^{*}\,\mathsf{L/(5)} \, {}^{*}\, r^2/\mathsf{R}^{2*}\, \ln((2)/(3))$

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

AVERAGE k ₂₀ (in/hr):	15.98
SOIL PERMEABILITY CLASS:	K4

Soil Permeability Classes

Con i cimoability Claccoc	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

⁻ Sample was very loose inside of the tube. Sample able to slide up and down within the tube during preparation.

5439 Harding Highway Mays Landing, NJ 08330 T: 800.258.3787 T: 609.625.1700

F: 609.625.1798 www.maserconsulting.com

TUBE PERMEAMETER TEST

(N.J.A.C. 7:9A - Standards for Individual Subsurface Sewage Disposal Systems; Subchapter 6, Section 6.2, page 39, Modified)

Client:	John Kainei	<u> </u>		MC #:	19000649A					
Project:	483 and 485	5 Elizabeth A	venue, Frank	lin Towns	ship, NJ				Date:	September 11, 2020
Boring/Sam	ple# or Des	crip./Locatio	n: <u>TP-12B</u>						Depth:	12"
Visual Descr	ription of So	oil (USCS):	Brown red si	lty/clayey	y SAND w	ith gravel an	d trace organ	nics		
Technician:	K. Perry			Proc	tor Data:	Max Dry D	ensity (pcf)	% of Ma	x Dry Density	Opt. Moisture (%)
Initial Speci	men Data:						_		-	-
Sample Type Undisturbed	:	Water Content (%)	Length, L (in)	Diame	eter (in)	Wet Den	sity (pcf)	Dry D	ensity (pcf)	
Re-Compacto	ed 🗆	11.1	5.02	2.8	875	84.0		75.6		
	Radi	ius of Burett	e, r: <u>0.3141</u>	in			Rac	lius of Soi	l Specimen, R:	1.4375 in
					TEST	DATA				
1	2	3	4		5	6	7		8	9
Trial No.	Burette	Readings	Head, h	Tin	ne, t	Temp, T	Permeal	oility at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C,	k_{T}	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	33.0	0.550	19.1	3.0	8	1.023	3.15
2	90 O	80 O	10.0	25.2	N 580	10 1	2.8	8	1 023	2 94

1	2	3	4		5	6	/	8	9
Trial Na	Burette l	Readings	Head, h	Tin	ne, t	Temp, T	Permeability at	Temp	Permeability at
Trial No.	h ₁ (cm)	h ₂ (cm)	(cm)	Sec	Min	(°C)	T°C, k _T	Correc.	20°C, k ₂₀
1	90.0	80.0	10.0	33.0	0.550	19.1	3.08	1.023	3.15
2	90.0	80.0	10.0	35.3	0.589	19.1	2.88	1.023	2.94
3	90.0	80.0	10.0	34.2	0.570	19.1	2.97	1.023	3.04
4	80.0	70.0	10.0	43.8	0.731	19.0	2.63	1.025	2.69
5	80.0	70.0	10.0	43.5	0.724	19.0	2.65	1.025	2.72
6	80.0	70.0	10.0	43.8	0.730	19.0	2.63	1.025	2.70
7	70.0	60.0	10.0	57.6	0.959	19.0	2.31	1.025	2.37
8	70.0	60.0	10.0	56.8	0.947	19.0	2.34	1.025	2.40
9	70.0	60.0	10.0	58.2	0.969	19.0	2.29	1.025	2.34
10	60.0	50.0	10.0	69.3	1.155	18.8	2.27	1.030	2.34
11	60.0	50.0	10.0	69.7	1.162	18.8	2.26	1.030	2.33
12	60.0	50.0	10.0	69.7	1.162	18.8	2.26	1.030	2.33
13	50.0	40.0	10.0	87.3	1.455	18.7	2.20	1.033	2.28
14	50.0	40.0	10.0	89.1	1.485	18.7	2.16	1.033	2.23
15	50.0	40.0	10.0	89.3	1.488	18.7	2.16	1.033	2.23

Perm, $\mathbf{k}_{\mathsf{T}}(7) = 60 \, ^{\star} \, \text{L/t} \, ^{\star} \, r^2 / R^{2 \star} \, \ln(h1/h2) = 60 \, ^{\star} \, \text{L/(5)} \, ^{\star} \, r^2 / R^{2 \star} \, \ln((2)/(3))$

AVERAGE k₂₀ (in/hr): 2.54

SOIL PERMEABILITY CLASS: K3

Head, h (4) = (2) - (3); **Perm, k**₂₀ (9) = $(7)^*(8)$

Soil Permeability Classes

Con i cimoability Ciacco	
> 20 inches per hour (in/hr)	K5
6 - 20 in/hr	K4
2 - 6 in/hr	K3
0.6 - 2 in/hr	K2
0.2 - 0.6 in/hr	K1
< 0.2 in/hr	K0

Remarks

⁻ Sample was very loose inside of the tube. Sample able to slide up and down within the tube during preparation.