30 INDEPENDENCE BOULEVARD SUITE 250 WARREN, NJ 07059 908.668.7777 whitestoneassoc.com

September 28, 2021

via email

BOHLER ENGINEERING NJ, LLC

10000 Midlantic Avenue Suite 410W Mount Laurel, New Jersey 08054

Attention: Greg DiBona, L.L.A.

Associate

Regarding: PRELIMINARY GEOTECHNICAL INVESTIGATION &

SWM AREA EVALUATION

L'OREAL DISTRIBUTION FACILITY - PROPOSED EXPANSION

100 COMMERCE DRIVE

FRANKLIN, SOMERSET COUNTY, NEW JERSEY WHITESTONE PROJECT NO.: GJ2118293.000

Dear Mr. DiBona:

Whitestone Associates, Inc. (Whitestone) has completed a preliminary geotechnical investigation and stormwater management (SWM) area evaluation at the above referenced site. The results of the limited evaluation and preliminary recommendations presented below are based on the soil conditions disclosed from a limited number of subsurface tests conducted during Whitestone's field investigation. Recommendations for further investigation also are included herein.

The purpose of the preliminary subsurface soils investigation was to assess anticipated geologic features, shallow groundwater and/or rock, refusal depths, existing fill, and the potential feasibility of shallow foundations and/or expected earthwork requirements. While the scope of this preliminary investigation will not be sufficient to formulate detailed design recommendations and a more comprehensive geotechnical investigation ultimately will be required, this preliminary investigation may be used to assess potentially development impactive geotechnical issues to support preliminary studies regarding the feasibility of developing the property.

1.0 SUMMARY OF FINDINGS

In general, the subsurface conditions preliminarily indicate conditions suitable for shallow foundation design. The exploration indicated the presence of highly moisture-sensitive soils throughout the site that will impact the planned construction. Based on past experience with similar soils, earthwork activities will require stringent soil moisture control efforts. Depending on the time of year of construction, site work should anticipate overexcavation of moisture sensitive soils in structural areas, using mechanical and/or chemical subgrade stabilization techniques, and exercising detailed attention to construction methods while maintaining strict moisture control. In addition, weathered rock and rock were encountered at variable depths that will present excavation difficulties.

Other Office Locations:

Bohler Engineering NJ, LLC
Preliminary Geotechnical Investigation &
SWM Area Evaluation
100 Commerce Drive
Franklin, New Jersey
September 28, 2021
Page 2

2.0 PROJECT DESCRIPTION

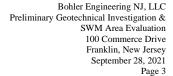
2.1 Site Location and Existing Conditions

The subject property located at 100 Commerce Drive in Franklin, Somerset County, New Jersey currently houses a L'Oreal distribution facility including multi-story buildings, wooded areas, pavements, landscaping, and utilities.

2.2 Site Geology

The site is located within the Piedmont Physiographic Providence of New Jersey. Specifically, the subject site is underlain by the Lower Jurassic-age and Upper Triassic-age Siltsone, Sandstone, and Shale members of the Passaic Formation, which is part of the Brunswick Group. These members generally consist of reddish-brown to brownish-purple and grayish-red siltstone, sandstone, and shale. The overburden materials at the site include weathered shale, mudstone, and sandstone.

2.3 Proposed Construction


Based on the February 8, 2013 *Horizontal Control Plan* prepared by Stires Associates, P.A. and information provided by Bohler Engineering NJ, LLC, the proposed redevelopment is anticipated to include constructing multiple building additions with a combined footprint of approximately 267,857 square feet, SWM facilities potentially including aboveground and belowground basins as well as porous pavements, new loading dock area, pavements, landscaping, and utilities. Details regarding the proposed SWM facilities have not been established at this time. The proposed building additions are not anticipated to include basements/cellars. No new retaining walls, with the exception of the below-grade walls for the loading dock area, are anticipated for redevelopment.

Detailed grading or structural loading information have not been finalized. Whitestone assumes the site will be redeveloped at or near existing site grades with maximum cut and fill on the order of one foot to three feet. Based on Whitestone's experience with similar structures, the maximum design loads are anticipated to be less than the following: column load - 150 kips, wall load - 3.0 kips/foot, and floor load - 250 pounds per square foot.

3.0 FIELD INVESTIGATION & LABORATORY TESTING

3.1 Field Exploration

Field exploration at the project site was completed by means of six soil borings (identified as B-1 through B-6) conducted with a track-mounted drill rig using hollow stem augers and split-spoon sampling techniques, four test pits (identified as TP-1 through TP-4) and eight soil profile pits (identified as SPP-1 through SPP-8) conducted with a track-mounted excavator. The borings and test pits were conducted within accessible portions of the proposed building footprint to depths ranging from approximately five feet below ground surface (fbgs) to 12.3 fbgs. The profile pits were conducted within the proposed SWM facilities to depths ranging from approximately five fbgs to eight fbgs. The subsurface tests were backfilled to the surface with excavated soils from the investigation. The locations of the subsurface tests are shown on the *Test Location Plan* included as Figure 1. *Records of Subsurface Exploration* are provided in Appendix A.

The subsurface tests were conducted in the presence of a Whitestone engineer who conducted field tests, recorded visual classifications, and collected samples of the various strata encountered. The tests were located in the field using normal taping procedures and estimated right angles. These locations are presumed to be accurate within a few feet.

Soil borings and Standard Penetration Tests (SPTs) were conducted in general accordance with ASTM International (ASTM) designation D 1586. The SPT resistance value (N) can be used as an indicator of the consistency of fine-grained soils and the relative density of coarse-grained soils. The N-value for various soil types can be correlated with the engineering behavior of earthworks and foundations.

Groundwater level observations, where encountered, were recorded during and immediately after the completion of field operations prior to backfilling the tests. Seasonal variations, temperature effects, man-made effects, and recent rainfall conditions may influence the levels of the groundwater, and the observed levels will depend on the permeability of the soils. Groundwater elevations derived from sources other than seasonally observed groundwater monitor wells may not be representative of true groundwater levels.

3.2 Laboratory Program

A representative sample of a selected stratum encountered was subjected to a laboratory program that included Atterberg limits determination (ASTM D-4318), moisture content determinations (ASTM D-2216) and washed gradation analyses (ASTM D-422) in order to conduct supplementary engineering soil classifications in general accordance with ASTM D-2487. The soil stratum tested was classified by the Unified Soil Classification System (USCS) and results of the laboratory testing are summarized in the following table. Quantitative test results are provided in Appendix B.

		PHYSIC	AL/TEXTURA	L ANALYSES	SUMMARY	7					
Boring	Sample	Depth (fbgs)	% Passing No. 200 Sieve	Moisture Content (%)	Liquid Limit (%)	Plastic Index (%)	USCS Classification				
B-1	S-2 2.0 - 4.0 48.1 21.9 32 13 SC										

4.0 SUBSURFACE CONDITIONS

The subsurface soil conditions encountered within the subsurface tests consisted of the following generalized strata in order of increasing depth. *Records of Subsurface Exploration* are provided in Appendix A.

Residual Soils: The subsurface tests encountered natural residual soils at the surface generally consisting of lean clay (USCS: CL), clayey sand (USCS: SC), and/or silt (USCS: ML). Within the tests, the residual soils extended to depths ranging from approximately two fbgs to 11 fbgs. SPT N-values within coarse-grained portions of this stratum ranged between four blows per foot (bpf) and 27 bpf, generally indicating loose to medium dense relative density and averaging approximately 13 bpf. Pocket penetrometer tests conducted within fine-grained portions of this stratum resulted in unconfined compressive strengths ranging between approximately one ton per square foot (tsf) and greater than 4.5 tsf, generally indicating stiff to hard consistency.

Bohler Engineering NJ, LLC
Preliminary Geotechnical Investigation &
SWM Area Evaluation
100 Commerce Drive
Franklin, New Jersey
September 28, 2021
Page 4

Weathered Rock/Bedrock: Beneath the residual soils, the tests encountered weathered rock materials. The top of weathered rock was encountered at depths ranging from approximately two fbgs to 11 fbgs. Tests were terminated within the weathered rock materials or weathered rock/bedrock interface at depths ranging from approximately five fbgs to 12.3 fbgs. SPT N-values within this stratum generally were in the refusal range (refusal defined as greater than 50 blows per six inches of split-spoon sampler advancement).

Groundwater: Static groundwater was not encountered within the subsurface tests conducted. However, apparent perched/trapped groundwater was encountered within a portion of the tests at depths ranging from approximately four fbgs to 7.5 fbgs, generally on top of or within weathered rock. Seasonal variations, temperature effects, and recent rainfall conditions may influence the levels of the groundwater. Groundwater elevations derived from sources other than seasonally observed groundwater monitor wells may not be representative of true groundwater level.

5.0 CONCLUSIONS AND PRELIMINARY RECOMMENDATIONS

The following discussion is based on the subsurface conditions encountered during Whitestone's limited subsurface investigation for the proposed redevelopment and is intended to provide general characteristics of the subsurface conditions for preliminary planning purposes and should not be utilized for final design of structural foundations, floor slabs, or pavements. These preliminary considerations and site development options should be confirmed or revised upon development of the final project design concept and completion of a site-specific subsurface investigation and engineering analyses.

Foundations: Whitestone preliminarily anticipates that the structures may be supported on conventional spread and continuous wall footings designed to bear either within the underlying natural materials and/or controlled structural fill materials that are properly evaluated, placed, compacted, and prepared in order to control their moisture content. Foundations bearing within the above materials may be preliminarily designed to impart a maximum allowable net bearing pressure in the range of 2,000 pounds per square foot (psf) to 4,000 psf, depending on final design column and wall loading, column spacing, settlement tolerances, and the final geotechnical investigation.

Floor Slabs and Pavements: Whitestone preliminarily anticipates that the natural site subgrade soils and/or controlled structural imported fill will be suitable for support of the proposed floor slabs and pavements. Subgrade stabilization and protection may also be necessary during wet conditions to obtain a stable surface. Subgrade stabilization may be achieved through the use of separation geotextiles, geogrids, and/or the addition of lime-cement to the subgrade.

On-Site Soil Reusability: Whitestone preliminarily anticipates that the majority of the natural site soils situated will be suitable for selective reuse as structural fill and/or backfill where moisture contents are controlled within two percent of the optimum and the soils are placed during favorable weather conditions. Based on the conditions disclosed by the subsurface exploration and the results of the laboratory test results, the majority of the on-site natural soils contain an appreciable amount of fines and are not anticipated to be immediately suitable for reuse as structural fill and/or backfill due to high moisture content characteristics. Disturbance of these soils should be minimized. The on-site moisture sensitive soils, while stable and often hard when in a dry natural state, will degrade when wetted or disturbed. Whitestone anticipates that the sandy and/or less plastic site soils, if encountered, may be suitable for reuse as structural fill and/or backfill provided moisture contents are controlled within two percent of the optimum only during favorable weather conditions. Due to moisture sensitivity, use of portions of the on-site soils should expect mixing with a granular material, extensive moisture

Bohler Engineering NJ, LLC Preliminary Geotechnical Investigation & SWM Area Evaluation 100 Commerce Drive Franklin, New Jersey September 28, 2021 Page 5

conditioning, and/or drying to facilitate their reuse, workability, and compaction in fill areas. These materials will become increasingly difficult to reuse and compact where wetted beyond the optimum moisture content. Materials that become exceedingly wet likely will require discing and aerating and extended time to dry during favorable weather.

Cobble- and boulder-sized weathered rock/bedrock materials or similarly sized materials greater than three inches in diameter will need to be separated from on-site soils to be placed as structural fill or backfill. Cobble-sized materials between three inches to 12 inches may be crushed or individually placed in structural fill or backfill layers deeper than two feet below proposed foundation and pavement subgraded levels. Care must be taken to individually seat any large particles and to compact soil around large particles with hand operated equipment to minimize risk of void formation. Boulder-sized greater than 12 inches in diameter need to be crushed prior to replacement as structural fill materials. Materials greater than three inches in size should be placed a minimum of three feet from utilities.

Excavation Difficulties: Weathered rock and bedrock were encountered across the subject property at variable depths that can present difficult excavation. Removal of weathered rock and potentially bedrock may be required within portions of the proposed site foundations and utilities, depending on final grading. Heavy excavating equipment with ripping tools will typically be effective in removing dense/hard weathered soils, transition materials, and cobble/boulder-sized rock fragments during site mass grading. The speed and ease of excavation will depend on the type of grading equipment, the skill of the equipment operators, and the geologic structure of the material itself, such as the direction of planes of weakness and spacing between discontinuities. Planned excavation in confined excavations, such as for footing and utility trenches, may require ripping tools, pneumatic hammers, pre-spitting and/or expansive grout.

Groundwater Control: Construction phase dewatering of perched/trapped groundwater through the use of gravity fed sump pumps should be anticipated during excavation activities for this site.

Supplemental Borings: A supplemental subsurface investigation designed to address site-specific conditions for proposed construction should be conducted following the finalization of the design concept, grading, and general site layout. The final subsurface investigation and geotechnical evaluation should be conducted to obtain subsurface information across the site at more closely spaced intervals within the proposed building, pavements, and utility alignments, etc.

6.0 PRELIMINARY SWM AREA EVALUATION

General: Soil profile pits SPP-1 through SPP-8 were conducted within accessible areas of the SWM facility locations provided by Bohler. The soil profile pits within the SWM areas were terminated at depths ranging between approximately five fbgs to eight fbgs.

Estimated Seasonal High Groundwater Levels: The methods used in determining the seasonal high groundwater level include evaluating the soil morphology within a test excavation and identifying irregular spots or blotches of different colors or minerals unlike that of the surrounding soil (mottles). A summary of the estimated seasonal high groundwater observations, where encountered, as well as infiltration test results are included in the following table.

		INFILTRATION	TEST SUMMARY		
Profile Pit	Surface Elevation	ESHGW	USDA	Infiltration	Test
#	(feet*)	(fbgs/feet*)	Classification @ Test	Depth (fbgs/feet*)	Rate (in/hour)
SPP-1	111.0	5.0/106.0	Clay	3.0/108.0	< 0.2
SPP-2	117.0	Not Encountered	Clay	4.0/114.0	< 0.2
SPP-3	117.0	6.0/111.0	Clay	3.0/114.0	< 0.2
SPP-4	116.0	Not Encountered	Clay	2.0/114.0	< 0.2
SPP-5	116.0	7.5/108.5	Clay	4.0/112.0	< 0.2
SPP-6	113.0	Not Encountered	Clay	2.0/111.0	< 0.2
SPP-7	114.0	Not Encountered	Clay	3.0/111.0	< 0.2
SPP-8	117.0	Not Encountered	Clay	2.0/115.0	< 0.2

^{*} datum not specified

Soil Infiltration Rates: Representative samples within the soil profile pits were subjected to tube permeameter analysis as detailed in *New Jersey Stormwater Best Practices Manual*. Laboratory tube permeameter testing resulted in a permeability rate of less than 0.2 inches per hour. Individual tube permeameter test results are provided in Appendix B.

Conclusions and Recommendations: The results of the subsurface investigation and infiltration testing indicate that the tested site soils consist predominantly of clay materials underlain by weathered rock/bedrock that are relatively impermeable and not conducive for SWM infiltration. Based on the findings of this investigation, Whitestone recommends using BMPs that are not reliant upon subsurface infiltration.

7.0 CLOSING

Whitestone appreciates the opportunity to be of service to Bohler Engineering NJ, LLC. Please note that Whitestone has the capability to conduct the additional geotechnical engineering services recommended herein. Please contact us at (908) 668-7777 with any questions or comments regarding this report.

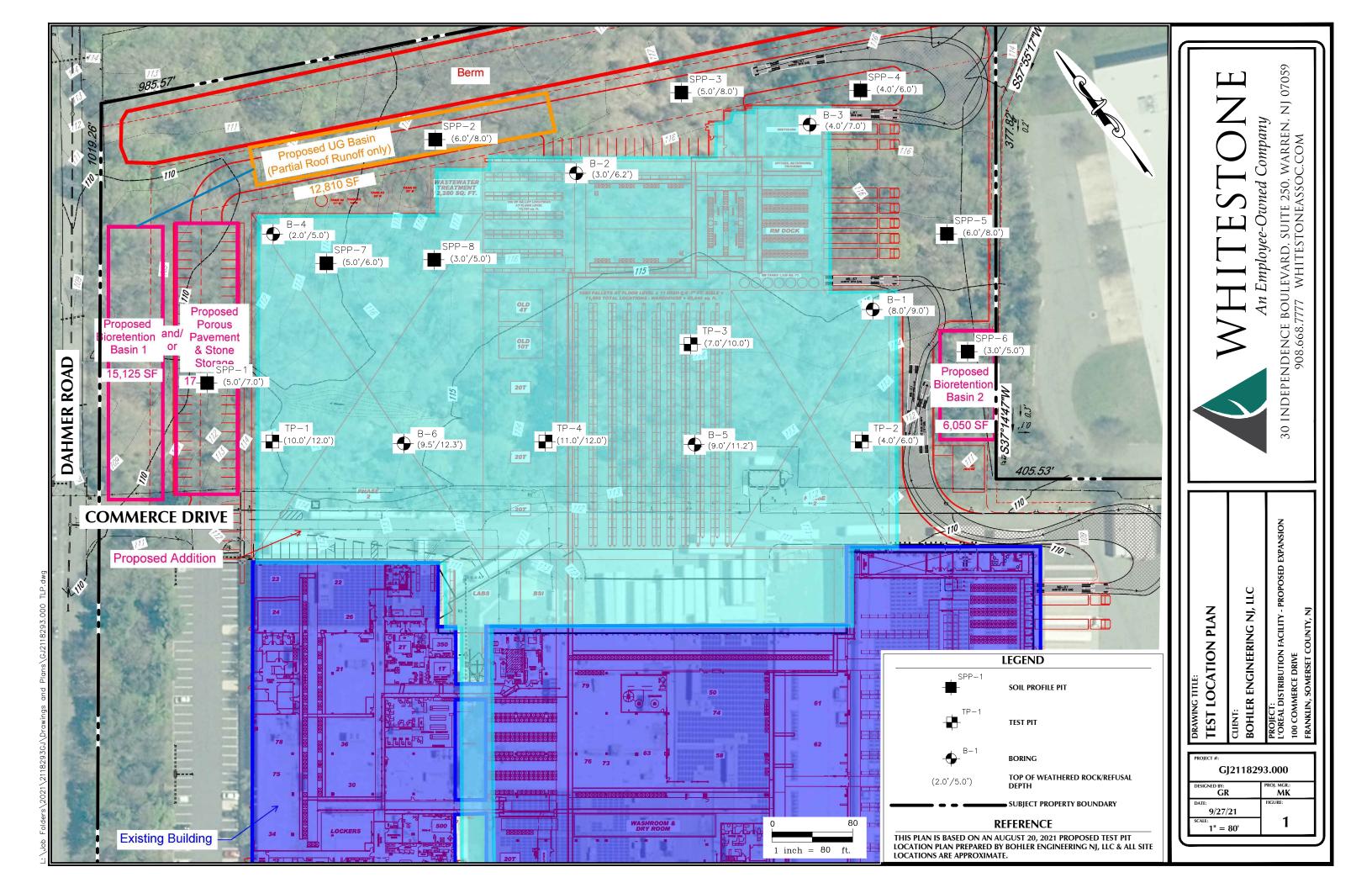
Sincerely,

WHITESTONE ASSOCIATES, INC.

Mudar Khantamr, P.E.

Associate

 $MK/pwd \qquad L: \label{local_submittals} L: \label{local_submittals} L: \label{local_submittals} PreGI. doc$


Enclosures

Copy: Ahmad Tamous, P.E., Bohler Engineering NJ, LLC

Laurence W. Keller, P.E. Vice President

FIGURE 1 Test Location Plan

APPENDIX A Records of Subsurface Exploration

Boring No.:

Project:		L'Ore	al Distribution Facilit	y - Pro	oposed	Expansio	n			WAI Pr	roject No.:	GJ2118293.000	
Location:		100 C	Commerce Drive; Fra	nklin,	Somers	set County	y, NJ				Client:	Bohler Engineerin	ig NJ, LLC
Surface El	evatio	n:	± 115.0 feet			I	Date Started:		9/17/2021	Water Depth	Elevation	Cave-In	Depth Elevation
Terminatio	n Dep	th:	9.0 feet	bgs		ļ.	Date Complete	ed:	9/17/2021	(feet bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locati	on:	Building Pad			l l	Logged By:	RL		During: NE	<u> </u>		
Drill / Test	Metho	od:	HSA / SPT				Contractor:	FS		At Completion: NE		At Completion:	8.0 107.0
								Geopr	obe	24 Hours:	Y	24 Hours:	
											<u> </u>		· -
	SA	MPL	E INFORMATION			DEPTH	CTDAT			DESCRIPTION OF M	IATEDIALO		DEMARKS
Depth				Rec.			STRAT	A		DESCRIPTION OF M			REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(feet) 0.0		_		(Classification	on)		
						- 0.0	RESIDUAL	111					
		$\setminus /$				-	1						
0 - 2	S-1	Х	2 - 2 - 2 - 4	18	4	<u> </u>	1		Reddish-Brown C	layey Sand, Moist, Loose (SC)			
		/ V				-	1						
		$\overline{}$				-	1						
		$ \setminus $				-	1						
2 - 4	S-2	ΧI	2 - 2 - 3 - 6	18	5	_	1		As Above (SC)				
		/ N				_	1						
						i –	1						
4 - 6	S-3	V	5 - 6 - 8 - 12	20	14	5.0			As Above, Mediur	n Dongo (SC)			
4-0	3-3	Λ	3 - 0 - 0 - 12	20	14				As Above, Medidi	il Delise (SC)			
		igwedge				l _							
		\				_							
6 - 8	S-4	Υ	9 - 11 - 16 - 30	18	27		4		As Above (SC)				
		Λ											
		\longleftrightarrow				8.0 <u>\begin{array}{c} \equiv \</u>	WEATHERED	7.2.2	Poddish Brown M	/eathered Shale, Dry, Very Den:	so (M/P)		
8 - 8.8	S-5	X	19 - 50/4"	6	50/4"	9.0	ROCK		Reddish-blown W	realliered Ghale, Dry, very Den.	36 (*****)		
						3.0			Boring Log B-1 Te	erminated at a Depth of 9.0 Feet	t Below Ground	Surface Due to	
						10.0	1		Auger Refusal	·			
							1						
						-	1						
						_	1						
]						
						<u> </u>							
						_	1						
						_	1						
						l –	4						
						45.0	4						
						15.0	4						
						-	-						
						I —	1						
						-	1						
						-	†						
						-	1						
						I —	1						
						_	1						
							1						
						20.0]						
						l _]						
] -	_						
						l _	4						
						-	4						
						l –	4						
						-	4						
						l –	-						
						25.0	-						
							†						
					I	I	I		Ī				

Boring No.: Page 1 of 1

Project:			al Distribution Facilit								WAI Pr	oject No.:	GJ2118293.000	
Location:			Commerce Drive; Fra		Somers				011710001	1		Client:	Bohler Engineerin	
Surface El			± 116.0 feet				Date Started:	-	9/17/2021			Elevation		Depth Elevation
Terminatio	-			bgs			Date Complete	-	9/17/2021		et bgs)		(fe	et bgs) (feet)
Proposed			Building Pad					RL		During:	NE 			
Drill / Test	Metho	od:	HSA / SPT					FS		At Completion:	NE	▽	At Completion:	6.0 110.0
			-			ˈ	Equipment:	Geopr	obe	24 Hours:		T	24 Hours:	I <u>\</u>
	SA	MPLI	E INFORMATION			DEPTH								
Depth				Rec.			STRAT	Α		DESCRIPTION				REMARKS
(feet)	No	Type	Blows Per 6"	(in.)	N	(feet) 0.0				(Class	sificatio	on)		
						- 0.0	RESIDUAL	7//						
		\setminus				-								
0 - 2	S-1	X	2 - 1 - 1 - 2	18	2	_		1/2	Reddish-Brown L	ean Clay, Moist, Stiff (CL)			Qu = 1.0 tsf
		$/ \setminus$					1	1/2						
		\setminus				l <u> </u>		1/2						
2 - 3.4	S-2	Χ	8 - 20 - 50/5"	14	70/11"	3.0		///	As Above, Very S					Qu = 2.0 tsf
						† -	WEATHERED ROCK		Reddish-Brown S	hale, Dry, Very Dense	(WK)			
				_		 	1							
4 - 4.8	S-3	$oldsymbol{ imes}$	31 - 50/4"	9	50/4"	5.0			As Above (WR)					
						"-	1							
						<u> </u>	<u>4</u>	簋	A - Ab (IMB)					Auger Refusal @
6 - 6.2	S-4	\times	50/2"	2	50/2"	6.2			As Above (WR) Boring Log B-2 To	erminated at a Depth of	of 6.2 Feet	Below Ground		6.0 fbgs
									Auger and Split-S					
						-								
						<u> </u>								
						-								
						<u> </u>	1							
						10.0	1							
						l –								
						_								
						-								
						<u> </u>								
						-	1							
						_								
						-								
						15.0								
						_								
						-								
						-	-							
						-	1							
						-	1							
						I -]							
						_]							
						-								
						20.0								
						-								
						_								
						-	1							
]							
]							
						_								
						25.0								
						23.0	1							

Boring No.:

Project:			al Distribution Facilit								WAI Project No.:	GJ2118293.000	
Location:			Commerce Drive; Fra		Somers					•	Client:	Bohler Engineering	
Surface El	evatio	n:	± 116.0 feet			ļ.	Date Started:	_	9/17/2021		Depth Elevation	Cave-Ir	Depth Elevation
Termination	-			bgs			Date Complete	-	9/17/2021		bgs) (feet)	(fe	et bgs) (feet)
Proposed			Building Pad					RL		During:	<u>NE</u> 		
Drill / Test	Metho	od:	HSA / SPT					FS		At Completion:	<u>NE</u> ▽	At Completion:	6.0 110.0 💆
							equipment:	Geopr	obe	24 Hours:	<u></u> <u></u> ▼	24 Hours:	I <u>\</u>
	SA	MPLI	E INFORMATION			DEPTH							
Depth				Rec.			STRAT	Α			OF MATERIALS		REMARKS
(feet)	No	Type	Blows Per 6"	(in.)	N	(feet) 0.0				(Classi	fication)		
						<u> </u>	RESIDUAL	7//					1
	0.4	V		40		_				0			0 4517
0 - 2	S-1	Λ	1 - 2 - 2 - 6	18	4				Reddish-Brown Le	ean Clay, Moist, Stiff (CL	-)		Qu = 1.5 tsf
		igwedge											
		\ /				_							
2 - 4	S-2	Χ	9 - 13 - 15 - 32	24	28	-			As Above, Very S	tiff (CL)			Qu = 2.0 tsf
		$/ \setminus$				4.0							
		()				4.0	WEATHERED						
		\setminus				5.0	ROCK						
4 - 6	S-3	X	17 - 30 - 36 - 50	24	66				Reddish-Brown W	/eathered Shale, Dry, Ve	ery Dense (WR)		
		\angle				<u> </u>							
6 - 6.8	S-4	\times	40 - 50/4"	10	50/4"	_		景景	As Above, (WR)				
						7.0			Boring Log B-3 Te	erminated at a Depth of 7	7 0 Feet Below Ground	Surface Due to	
						_			Auger Refusal	Similated at a Deptil of 1	1.0 1 det Below Ground	2 Cariace Due to	
						_							
						10.0							
						_							
						_							
						_							
						15.0							
						-							
						_							
						_							
						_							
						-							
						_							
						-							
						20.0							
						_							
						-							
						-							
						l —							
						_							
						_							
						25.0							
						25.0							
									Ī				1

Boring No.: B-4

Page 1 of 1

Project:		L'Ore	al Distribution Facilit	y - Pro	oposed	Expan	sio	ו			WAI Project No.: GJ2118293.000
Location:		100 C	ommerce Drive; Fra	ınklin,	Somers	set Co	unty	, NJ			Client: Bohler Engineering NJ, LLC
Surface El	evatio	n:	± 112.0 feet					Date Started:		9/17/2021	Water Depth Elevation
Terminatio				bgs				Date Complete	-	9/17/2021	(feet bgs) (feet) (feet bgs) (feet)
Proposed			Building Pad	J					RL -		During: NE y
Drill / Test			HSA / SPT				_		FS		At Completion: NE NE At Completion: 5.0 107.0 □□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□
							- 1		Geopr	ohe	24 Hours: 24 Hours:
							<u>- I</u>		Соорг		
	SA	MPLE	INFORMATION			DEP	тн				
Depth				Rec.				STRAT	Α		DESCRIPTION OF MATERIALS REMARKS
(feet)	No	Туре	Blows Per 6"	(in.)	N	(fee	_				(Classification)
						0.0					
		\					_	RESIDUAL			
0 - 2	S-1	ΥI	1 - 2 - 8 - 30	18	10					Reddish-Brown L	Lean Clay, Moist, Stiff (CL) Qu = 1.25 tsf
		ΛΙ					_				
		()				2.0		WEATHERER	<u>///</u>		
2 - 2.8	S-2	X	30 - 50/3"	9	50/3"		_	WEATHERED ROCK		Reddish-Brown V	Weathered Shale, Dry, Very Dense (WR)
						2.8	<u> </u>		====		
							-	-			
4 40	6.3	\bigcup	50/2"	2	E0/0"	1	_	-		As Above (WR)	
4 - 4.2	S-3	\sim	50/2"	2	50/2"	5.0) <u> </u>	∐ ≅0		AS ADOVE (VVK)	
						3.0	<u> </u>	2		Boring Loa B-4 To	erminated at a Depth of 5.0 Feet Below Ground Surface Due to
							-	1		Auger Refusal	
							_	1			
							-				
							_	1			
							_	1			
								1			
							_]			
						10.0					
]			
							_	1			
							_	1			
							_				
							_				
							_				
							-				
							_				
						45.0					
						15.0	_				
							-				
							_	1			
							-	1			
							_	1			
							-	1			
							_	1			
							-	1			
							_	1			
						20.0	, -	1			
							_	1			
							-	1			
							_	1			
							-	1			
							_	1			
							-	1			
							_	1			
							-	1			
							_]			
						25.0) _ -]			
]			

Boring No.: Page 1 of 1

Project:		L'Ore	al Distribution Facilit	y - Pro	posed E	Expansio	n				WAI Pı	oject No.:	GJ2118293.000	
Location:		100 C	commerce Drive; Fra	nklin,	Somers	et Count	y, NJ					Client:	Bohler Engineering	ng NJ, LLC
Surface Ele	evatio	n:	± 113.0 feet				Date Started:	_	9/17/2021			Elevation		Depth Elevation
Terminatio	-		11.2feet	bgs			Date Complete	ed: _	9/17/2021		eet bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locati	on:	Building Pad				Logged By:	RL		During:	NE	<u></u> Ā		
Drill / Test	Metho	d:	HSA / SPT				Contractor:	FS		At Completion:	NE	▽	At Completion:	10.5 102.5
							Equipment:	Geopr	obe	24 Hours:		<u></u> T	24 Hours:	I <u>⊠</u>
	SAI	MPLE	INFORMATION			DEPTH	070.47			DECODIDE	N OF M	ATERIALO		DEMARKS
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)	STRAT	Α		DESCRIPTIO (Clas	ON OF M			REMARKS
(Ieel)	NO	туре	Blows Fel 0	(111.)	IV	0.0				(0,000	Jonnouth	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
0 - 2	S-1	\bigvee	2 - 2 - 3 - 5	20	5	-	RESIDUAL		Reddish-Brown L	ean Clay, Moist, Stiff	(CL)			Qu = 1.75 tsf
2 - 4	S-2	\bigvee	6 - 6 - 10 - 19	24	16	4.0			As Above (CL)					Qu = 1.75 tsf
4 - 6	S-3	\bigvee	5 - 21 - 21 - 20	20	42	5.0			Reddish-Brown S	ilt, Moist, Very Stiff (N	ML)			Fragments of Highly Weathered Shale Starting @ 4.0 fbgs Qu = 3.0 tsf
6 - 8	S-4	\bigvee	19 - 25 - 32 - 39	18	57	-			As Above, Dry, H	ard (ML)				Qu = >4.5 tsf Auger Grinding @
8 - 9.3	S-5	X	20 - 20 - 50/3"	12	70/9"	9.0	_		As Above (ML)					8.0 fbgs Qu = >4.5 tsf
		\triangle				_	WEATHERED]- <u>[</u>]-	Reddish-Brown W	eathered Shale, Dry	, Very Den	se (WR)		
						10.0	ROCK							
						<u> </u>	<u> </u>							Auger Refusal @
11 - 11.2	S-6	$\overline{\mathbf{x}}$	50/2"	2	50/2"	11.2		7_7_7.	As Above (WR)	itdt Dth-	-(44.0 =-	1 D-1 0	d Ourface Door to	11.0 fbgs
						20.0			Auger and Split-S	erminated at a Depth poon Refusal	0111.216	A DEROW GROUI	d Surface Due to	

Boring No.: Page 1 of 1

Project:			al Distribution Facilit								WAI P	roject No.:	GJ2118293.000	
Location:		100 C	Commerce Drive; Fra	nklin,	Somers					_		Client:	Bohler Engineering	
Surface El			± 116.0 feet				Date Started:	-	9/17/2021			Elevation		Depth Elevation
Terminatio	-		12.3feet	bgs			Date Complete	d: _	9/17/2021		eet bgs)	(feet)	(fe	et bgs) (feet)
Proposed	Locati	on:	Building Pad				Logged By:	RL		During:	NE	<u> </u>		
Drill / Test	Metho	od:	HSA / SPT				Contractor:	FS		At Completion:	NE	<u></u> ▽	At Completion:	8.0 108.0
							Equipment:	Geopr	obe	24 Hours:		<u></u> Ā	24 Hours:	<u></u> <u></u> <u>⊠</u>
	SA	MPLI	E INFORMATION			DEPTH				DESCRIPTION			•	
Depth (feet)	No	Туре	Blows Per 6"	Rec. (in.)	N	(feet)	STRAT	A		DESCRIPTIO (Class	ON OF M			REMARKS
(leet)	NO	Type	Blows Fel 0	(111.)	IN	0.0				(0.00	Joiniouth	··· <i>y</i>		
0 - 2	S-1	\bigvee	2 - 1 - 3 - 3	12	4	- -	RESIDUAL		Reddish-Brown L	ean Clay, Moist, Stiff	(CL)			Qu = 1.5 tsf
2 - 4	S-2	\bigvee	3 - 3 - 5 - 7	18	8	- -			As Above (CL)					Qu = 1.5 tsf
4 - 6	S-3	\bigvee	4 - 9 - 10 - 13	18	19	5.0			As Above, Hard (CL)				Qu = >4.5 tsf
6 - 8	S-4	X	4 - 5 - 8 - 10	21	13	<u>-</u>			As Above, Stiff (C	L)				Qu = 1.75 tsf
8 - 10	S-5	\bigvee	7 - 12 - 17 - 50	24	29	9.5	WEATHERED ROCK	<u>///</u>	As Above, Hard (I	CL) /eathered Shale, Dry	, Very Den	ise (WR)		Qu = >4.5 tsf
12 - 12.3	S-6	\triangleright	41 - 50/1"	6	50/1"	12.3			As Above (WR)					Auger Refusal @ 12.0 fbgs
						20.0			Boring Log B-6 Te Auger and Split-S	erminated at a Depth poon Refusal	of 12.3 Fe	et Below Grour	d Surface Due to	

RECORD OF

Test	Pit	No.:	TP-1	
Page	1	of	1	

A S	SOC	IATES,	INC.	SUB	SU	RFACE	EXPLOR	RATIO	N			Page _	1	of	1
Project: L	L'Oreal Dis	stribution Fa	cility - Propos	ed Expansion				WAIF	Project No.:	C	GJ2118293.000				
Location:	100 Comm	nerce Drive;	Franklin, Som	erset County, NJ					Client:	Е	Bohler Engineerin	g NJ, LLC			
Surface Elevat	tion: ±	115.0	feet	Date Started:	9	9/14/2021	Wa	ter Depth	Elevation		Cave-	In Depth	Eleva	tion	
Termination D	epth:	12.0	feet bgs	Date Complete	e d : 9	9/14/2021		(feet bgs)	(feet)		(feet bgs)	(feet)		
Proposed Loc	ation:	Building Pa	d	Logged By: F	RL		During:	NE	l <u></u>	$ar{m{\Lambda}}$					
Excavating Me	ethod:	Test Pit Exc	cavation	Contractor: N	ИС		At Completion:	NE	l <u></u>	∇	At Completion:	NE		超	L
Test Method:		Visual Obse	ervation	Rig Type:	Deere		24 Hours:		l <u></u>	¥					
SAMPLE	INFORM	IATION	DEPTH	STRATA			DESCRIP	TION OF I	MATERIAL	S		R	EMAR	ks	
Depth (ft.)	Number	Туре	(feet)				(C	lassificat	ion)						
			0.0												
				RESIDUAL		Reddish-Brown	Lean Clay, Moist (CL	.)							

Test	Pit	No.:	TP-2
Page	1	of	1

Project:	L'Oreal Dis	stribution Fac	cility - Propose	d Expansion				WALE	Project No.:	GJ2118293.000	
Location:	100 Comm	nerce Drive;	Franklin, Som	erset County, NJ					Client:	Bohler Engineerin	g NJ, LLC
Surface Eleva	ation: ±	112.0	feet	Date Started:	: 9	9/14/2021	Wa	ter Depth	Elevation	Cave-	In Depth Elevation
Termination I	Depth:		feet bgs	Date Comple		9/14/2021		(feet bgs)			feet bgs) (feet)
Proposed Lo		Building Pag		Logged By:	_		During:	4.0(P)	108.0	· ·	3.7. (,
Excavating M		Test Pit Exc		Contractor:			At Completion:	4.0(P)		At Completion:	NE 🖼
Test Method:		Visual Obse		Rig Type:	Deere	_	24 Hours:			/ Completion	
rest metriou.		VISUAI ODSC	, valion	Kig Type.	Decic		24110013.		<u></u> ¥		
SAMPLE	INFORM	IATION	DEPTH	OTDATA			DESCRIP'	TION OF I	MATERIALS		DEMARKO
Depth (ft.)	Number	Туре	(feet)	STRATA				Classificat			REMARKS
Dopui (i.i.)	Humber	1 9 00							•		
			0.0								
				RESIDUAL		Reddish-Brown	Lean Clay, Moist (CL	_)			
			_								
			-								
0 - 4	S-1	BAG									
0 - 4	0-1	BAO									
			-		///						
			_								
			4.0		1/2						
				WEATHERED	===	Reddish-Brown	Weathered Shale, W	et (WR)			Water Seeping In @ 4.0 fbgs
			_	ROCK							
4 - 6	S-2	BAG	5.0								
4-0	3-2	DAG									
			_								
			6.0								
						Test Pit Log TF Refusal	2-2 Terminated at a De	epth of 6.0 Fe	et Below Ground S	urface Due to	
			_			Relusal					
			_								
			_								
			⊢								
			10.0								
			l ⊣								
			_								
			7								
			45.0								
			15.0								
											Ī

Test	Pit	No.:	TP-3
Page	1	of	1

Project:	L'Oreal Di	stribution Fac	cility - Propose	ed Expansion				WAIF	Project No.:	GJ2118293.000	
Location:	100 Comn	nerce Drive;	Franklin, Som	erset County, NJ					Client:	Bohler Engineerin	g NJ, LLC
Surface Eleva	ation: ±	114.0	feet	Date Started:	: !	9/14/2021	Wat	er Depth	Elevation	Cave-	In Depth Elevation
Termination I	Depth:	10.0	feet bgs	Date Comple	ted:	9/14/2021	(1	feet bgs)	(feet)	(1	feet bgs) (feet)
Proposed Loc		Building Pag	d -	Logged By:	-		During:	NE	<u> </u>		
Excavating M		Test Pit Exc		Contractor:			At Completion:	NE		At Completion:	NE 🖼
Test Method:		Visual Obse		Rig Type:	Deere		24 Hours:		<u> </u>		·=
				1			<u> </u>				
SAMPLE	INFORM	IATION	DEPTH	STRATA			DESCRIPT	TION OF I	MATERIALS		REMARKS
Depth (ft.)	Number	Туре	(feet)	• • • • • • • • • • • • • • • • • • • •			(C	lassificat	ion)		1121117111110
			0.0								
			0.0	RESIDUAL	100	Poddich Brown	Lean Clay, Moist (CL)				
				REGIDOAL		reduisii-biowii	Lean Glay, Moist (GL)	'			
			_								
			_								
0 - 7	S-1	BAG	l								
			_								
			_								
			5.0								
			_								
			_								
			7.0								
				WEATHERED ROCK		Reddish-Brown	Weathered Shale, Dry	y (WR)			
					====						
					====						
- 40	0.0	540			====						
7 - 10	S-2	BAG									
			_								
					====						
			10.0								
						Test Pit Log TP	-3 Terminated at a De	pth of 10.0 F	eet Below Ground	Surface Due to	
						Refusal					
			_								
			15.0								
			10.0								
						I					

Test	Pit	No.:	TP-4
Page	1	of	1

Project:	L'Oreal Di	stribution Fac	cility - Proposed E	Expansion				WAIF	Project No.:	GJ2118293.000			
Location:	100 Comm	nerce Drive; [Franklin, Somers	et County, NJ					Client:	Bohler Engineering	g NJ, LLC		
Surface Eleva	ation: ±	113.0	feet	Date Started:	: 9	9/14/2021	w	ater Depth	Elevation	Cave-	In Depth	Elevation	on
Termination I	Depth:	12.0	feet bgs	Date Comple	ted:	9/14/2021		(feet bgs)	(feet)	(f	eet bgs)	(feet)	
Proposed Loc	cation:	Building Pag	b	Logged By:	RL		During:	NE	<u> </u>				
Excavating M	lethod:	Test Pit Exc	avation	Contractor:	МС	<u> </u>	At Completion:	: NE		At Completion:	NE		2
Test Method:		Visual Obse	ervation	Rig Type:	Deere		24 Hours:		<u></u> ¥	•			_ =
SAMPLE	INFORM	MATION	DEPTH	OTD ATA			DESCRII	PTION OF I	MATERIALS		D.	-14451/	0
Depth (ft.)	Number	Туре	(feet)	STRATA				(Classificat			RI	EMARK	.S
			0.0										
0-11	S-1	BAG	5.0	RESIDUAL			Lean Clay, Moist (C						
11 - 12	S-2	BAG	12.0	ROCK									
			15.0			Test Pit Log TP	2-4 Terminated at a [Depth of 12.0 F	eet Below Ground	Surface			

Soil Profile Pit No.: SPP-1

Page 1 of 1

Project: L'Oreal I	Distribution Facility - Proposed Ex	pansion			WAI P	roject No.:		GJ2118293.000		
Location: 100 Con	nmerce Drive; Franklin, Somerse	t County, NJ				Client:		Bohler Engineering	NJ, LLC	
Surface Elevation:	± 111.0 feet	Date Started:	9/17/2021	Water	Depth	Elevation		Estimated	Seasona	al High
Termination Depth:	7.0 feet bgs	Date Completed:	9/17/2021	(fe	et bgs)	(feet)		Groundwater	Depth	Elevation
Proposed Location:	Porous Pavement	Logged By:	RL	During:	5.0(P)	106.0	Ā	(fee	et bgs)	(feet)
Excavating Method:	Test Pit Excavation	Contractor:	MC	At Completion:	5.0(P)	106.0	∇	At Completion:	5.0	106.0
Test Method:	Visual Observation	Rig Type:	Deere	24 Hours:			¥	_		
		I					_			

Test Method:		Visual Obs		Rig Type:	Deere 24 Hours: ▼	3.0 100.0
SAMPLE			DEPTH	HORIZON	DESCRIPTION OF MATERIALS	REMARKS
Depth (feet)	Number	Туре	feet		(Classification)	
			0.0	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; Friable; No Roots; No Mottling	No Topsoil
0 - 5	S-1	BAG	3.0			
			5.0 5 - 7	WEATHERED ROCK	Reddish-Brown (10R 4/8) Weathered Shale	Water Seeping Into Test Pit @ 5.0 fbgs
5 - 7	S-2	BAG	7.0		Soil Profile Pit SPP-1 Terminated at a Depth of 7.0 Feet Below Ground Surface Due to Refusal	
			9.0			
			10.0			
			11.0			
			13.0			
			15.0			

Soil Profile Pit No.: SPP-2

Project:L'Oreal Distribution Facility - Proposed ExpansionWAI Project No.:	GJ2118293.000	
Location: 100 Commerce Drive; Franklin, Somerset County, NJ Client:	Bohler Engineering NJ, LLC	
Surface Elevation: ± 117.0 feet Date Started: 9/17/2021 Water Depth Elevation	Estimated Seasonal High	
Termination Depth: 8.0 feet bgs Date Completed: 9/17/2021 (feet bgs) (feet)	Groundwater Depth Elevation	
Proposed Location: Underground Basin Logged By: RL During: NE 5	(feet bgs) (feet)	
Excavating Method: Test Pit Excavation Contractor: MC At Completion: NE 5	7 At Completion: <u>NE </u>	
Test Method: Visual Observation Rig Type: Deere 24 Hours: 1	<u> </u>	

est Method:		Vieual Oha	ervation	Rig Type:	Deere 24 Hours: V At Completion:	NE
		Visual Obs		- Kig Type:		
SAMPLE			DEPTH	HORIZON	DESCRIPTION OF MATERIALS (Classification)	REMARKS
Depth (feet)	Number	Туре	feet		(Olassification)	
			0.0	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; Friable; No Roots; No Mottling	No Topsoil
			2.0			
0 - 6	S-1	BAG	3.0			
			4.0			
			6.0	WEATHERED	Reddish-Brown (10R 4/8) Weathered Shale	
6 - 8	S-2	BAG	7.0	ROCK	Reduisir Brown (1010 470) Weathered Shale	
			8.0		Soil Profile Pit SPP-2 Terminated at a Depth of 8.0 Feet Below Ground Surface Due to Auger Refusal	
			9.0			
			10.0			
			11.0			
			12.0			
			13.0			
			15.0			

Soil Profile Pit No.: SPP-3

Page 1 of 1

Project: L'Oreal	Distribution Facility - Proposed Ex	pansion		WAI Project No.: GJ2118293.000				
Location: 100 Cor	nmerce Drive; Franklin, Somerset	County, NJ		Client: Bohler Engineering NJ, LLC				
Surface Elevation:	± 117.0 feet	Date Started:	9/17/2021	Water	Depth Elevation	Estimated Seasonal High		
Termination Depth:	8.0 feet bgs	Date Completed:	9/17/2021	(fe	et bgs) (feet)	Groundwater Depth Elevation		
Proposed Location:	SWM	Logged By:	RL	During:	6.0(P) 111.0 Y	(feet bgs) (feet)		
Excavating Method:	Test Pit Excavation	Contractor:	MC	At Completion:	6.0(P) 111.0 ▽	At Completion: 6.0 111.0		
Test Method:	Visual Observation	Rig Type:	Deere	24 Hours:	_			
	·		·					

Excavating M		Test Pit E		Contractor:	MC At Completion: $6.0(P)$ 111.0 \heartsuit At Completion:	6.0 111.0
Test Method:		Visual Ob	servation	Rig Type:		
SAMPLE	INFORM	IATION	DEPTH	HORIZON	DESCRIPTION OF MATERIALS	REMARKS
Depth (feet)	Number	Туре	feet		(Classification)	
			0.0 0 - 5	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; Friable; No Roots; No Mottling	No Topsoil
			2.0			
0 - 5	S-1	BAG	3.0			
			5.0	WEATHERED ROCK	Reddish-Brown (10R 4/8) Weathered Shale	_
5 - 8	S-2	BAG	6.0 \(\sum \)			Water Seeping Into Test P @ 6.0 fbgs
			8.0		Soil Profile Pit SPP-3 Terminated at a Depth of 8.0 Feet Below Ground Surface Due to Refusal	
			9.0			
			10.0			
			11.0			
			13.0			
			14.0			
			15.0			

Soil Profile Pit No.: SPP-4

Project: L'Oreal D	istribution Facility - Proposed Ex	pansion		WAI Project No.: GJ2118293.000			GJ2118293.000		
Location: 100 Com	merce Drive; Franklin, Somerset	County, NJ		Client: Bohler Engineering NJ, LLC				Bohler Engineering NJ, LLC	
Surface Elevation: ±	116.0feet	Date Started:	9/17/2021	Water	Depth	Elevation		Estimated Seasonal High	
Termination Depth: 6.0 feet bgs		Date Completed:	9/17/2021	(feet bgs) (feet)				Groundwater Depth Elevation	
Proposed Location:	SWM	Logged By:	RL	During:	NE		$ar{m{\Lambda}}$	(feet bgs) (feet)	
Excavating Method:	Test Pit Excavation	Contractor:	MC	At Completion:	NE		∇	At Completion: NE	
Test Method: Visual Observation		Rig Type:	Deere	24 Hours:			¥		

Excavating M	lethod:	Test Pit E	cavation	Contractor:	MC At Completion: NE \longrightarrow At Completion:	<u>NE</u>
Test Method:		Visual Obs	servation	Rig Type:		
SAMPLE	INFORM	IATION	DEPTH	HORIZON	DESCRIPTION OF MATERIALS	REMARKS
Depth (feet)	Number	Туре	feet		(Classification)	
			0.0	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist;	No Topsoil
				KESIDOAL	Friable; No Roots; No Mottling	ivo ropson
			1.0			
			-			
0 - 4	S-1	BAG	2.0			
			3.0			
			4.0			
			4 - 6	WEATHERED ROCK	Reddish-Brown (10R 4/8) Weathered Shale	
4 - 6	S-2	BAG	5.0			
			-			
			6.0		Soil Profile Pit SPP-4 Terminated at a Depth of 6.0 Feet Below Ground Surface Due to Refusal	
			7.0			
			8.0			
			9.0			
			10.0			
			11.0			
			12.0			
			13.0			
			14.0			
			-			
			15.0			

Soil Profile Pit No.: SPP-5

Page 1 of 1

WAI Project No.: GJ2118293.000 L'Oreal Distribution Facility - Proposed Expansion Project: Location: 100 Commerce Drive; Franklin, Somerset County, NJ Client: Bohler Engineering NJ, LLC Surface Elevation: 116.0 feet Date Started: 9/17/2021 Water Depth | Elevation **Estimated Seasonal High** (feet bgs) | (feet) Termination Depth: 8.0 feet bgs Date Completed: 9/17/2021 **Groundwater Depth | Elevation** Logged By: During: (feet bgs) | (feet) Proposed Location: SWM RL 7.5(P) 108.5

		Test Pit E		Contractor:	MC At Completion: $7.5(P)$ 108.5 ∇ At Completion:	: <u>7.5</u> <u>108.5</u>	
		Visual Obs	servation	Rig Type:	<u>Deere</u> 24 Hours :		
SAMPLE INFORMATION DEPTH		DEPTH	HORIZON	DESCRIPTION OF MATERIALS	REMARKS		
Depth (feet)	Number	Туре	feet		(Classification)		
			0.0				
0 - 6	S-1	BAG	0-6 1.0 2.0 3.0 4.0 5.0	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; Friable; No Roots; No Mottling	No Topsoil	
6 - 8	S-2	BAG	6.0 6-8	WEATHERED ROCK	Reddish-Brown (10R 4/8) Weathered Shale	Water Seeping Into Test F	
			8.0			@ 7.5 fbgs	
			9.0		Soil Profile Pit SPP-5 Terminated at a Depth of 8.0 Feet Below Ground Surface Due to Refusal		
			12.0				
			15.0				

Soil Profile Pit No.: SPP-6

Page 1 of 1

Project: L'Oreal D	L'Oreal Distribution Facility - Proposed Expansion WAI Project								GJ2118293.000		
Location: 100 Commerce Drive; Franklin, Somerset County, NJ									Bohler Engineering NJ, LLC		
Surface Elevation: ±	113.0	feet	Date Started:	9/17/2021	Water	Depth	Elevation		Estimated	d Seasonal High	
Termination Depth:	5.0	feet bgs	Date Completed:	9/17/2021	(fe	et bgs)	(feet)		Groundwate	r Depth Elevation	
Proposed Location:	Bioretentio	on Basin	Logged By:	RL	During:	NE		$ar{m{\Lambda}}$	(fe	et bgs) (feet)	
Excavating Method:	Test Pit Ex	cavation	Contractor:	MC	At Completion:	NE		∇	At Completion:	NE	
Test Method:	Visual Obs	servation	Rig Type:	Deere	24 Hours:			¥			
SAMPLE INFORMATION DEPTH				DESCRIPTION OF MATERIALS							
			HORIZON I							RFMARKS	

Excavating Method: Test Pit Excavation Test Method: Visual Observation		Contractor:				
		Rig Type:				
SAMPLE	INFORM	IATION	DE	PTH	HORIZON	DESCRIPTION OF MATERIALS REMARKS
Depth (feet)	Number	Туре	1	feet		(Classification)
			0.0			
				0 - 3	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; No Topsoil Friable; No Roots; No Mottling
			1.0			
				1		
0 - 3	S-1	BAG	2.0			
			-	1		
			3.0	1		
			- 3.0	3 - 5	WEATHERED	Reddish-Brown (10R 4/8) Weathered Shale
			-	1	ROCK	
3 - 5	S-2	BAG	4.0	-		
			-	-		
			5.0			Soil Profile Pit SPP-6 Terminated at a Depth of 5.0 Feet Below Ground Surface Due to Refusal
			-	-		
			6.0	-		
			-	-		
			7.0	4		
			-	-		
			8.0	-		
			-	4		
			9.0	1		
			_	-		
			10.0	1		
			_	4		
			11.0	1		
			_	1		
			12.0	1		
			_	1		
			13.0	1		
			_			
			14.0]		
			_			
			15.0			

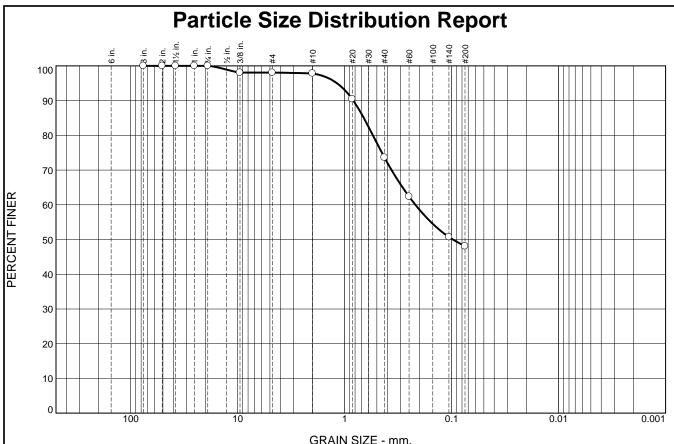
Soil Profile Pit No.: SPP-7

Page 1 of 1

Project: L'Oreal Distribution Facility - Proposed	Expansion			WAI P	roject No.:		GJ2118293.000
Location: 100 Commerce Drive; Franklin, Somer	set County, NJ	Client: Bohler Engineering NJ, LLC					
Surface Elevation: ± 114.0 feet	Date Started:	9/17/2021	Water	Depth	Elevation		Estimated Seasonal High
Termination Depth: 6.0 feet bgs	Date Completed:	9/17/2021	(fe	et bgs)	(feet)		Groundwater Depth Elevation
Proposed Location: SWM	Logged By:	RL	During:	NE		$ar{m{\Lambda}}$	(feet bgs) (feet)
Excavating Method: Test Pit Excavation	Contractor:	MC	At Completion:	NE		∇	At Completion: NE
Test Method: Visual Observation	Rig Type:	Deere	24 Hours:			¥	

Excavating N		Test Pit E			Contractor:	
Test Method: Visual Observation		1	Rig Type:	24 Hours: ▼		
SAMPLE	INFORM	MATION	DI	EPTH	HORIZON	DESCRIPTION OF MATERIALS REMARKS
Depth (feet)	Number	Туре		feet		(Classification)
			0.0	0 - 5	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; No Topsoil
			_		1120.507.2	Friable; No Roots; No Mottling
			1.0			
			_			
			2.0			
				1		
0 - 5	S-1	BAG	3.0	1		
				1		
			4.0	1		
				1		
				1		
			5.0	5 - 6	WEATHERED	Reddish-Brown (10R 4/8) Weathered Shale
5 - 6	S-2	BAG	-	1	ROCK	
			6.0	+		Soil Profile Pit SPP-7 Terminated at a Depth of 6.0 Feet Below Ground Surface Due to Refusal
			-	-		
			7.0	4		
			_	4		
			8.0	4		
			_	1		
			9.0	1		
			10.0			
				1		
			11.0	1		
			-	1		
			12.0	1		
			_	1		
			13.0	1		
			13.0	1		
			-	1		
			14.0	1		
			-	4		
			15.0	4		

Soil Profile Pit No.: SPP-8


Page 1 of 1

Project: L'Oreal [Distribution Facility - Proposed Ex	pansion			WAI Pı	roject No.:		GJ2118293.000	
Location: 100 Com	nmerce Drive; Franklin, Somerse	t County, NJ		Client: Bohler Engineering NJ, LLC					
Surface Elevation:	± 117.0 feet	Date Started:	9/17/2021	Water	Depth	Elevation		Estimated Seasonal High	
Termination Depth:	5.0 feet bgs	Date Completed:	9/17/2021	(fee	et bgs)	(feet)		Groundwater Depth Elevation	
Proposed Location:	SWM	Logged By:	RL	During:	NE		Ā	(feet bgs) (feet)	
Excavating Method:	Test Pit Excavation	Contractor:	MC	At Completion:	NE		∇	At Completion: NE	
Test Method:	Visual Observation	Rig Type:	Deere	24 Hours:			lacksquare		
CAMPLE INCODE	MATION DEPTH								

Excavating N		Test Pit E			Contractor:	
Test Method:		Visual Ob	servatior	ו	Rig Type:	<u>Deere</u> 24 Hours: ▼
SAMPLE INFORMATION DEPTH		EPTH	HORIZON	DESCRIPTION OF MATERIALS REMARKS		
Depth (feet)	Number	Туре		feet		(Classification)
			0.0			
				0 - 3	RESIDUAL	Reddish-Brown (10R 4/8) CLAY; No Coarse Fragments; Fine, Strong Blocky Structure; Moist; No Topsoil Friable; No Roots; No Mottling
			-	1		Thusis, No Nools, No Motaling
			1.0	4		
0 - 3	S-1	BAG	_	4		
			2.0			
			3.0	1		
		1	1 3.0 —	3 - 5	WEATHERED	Reddish-Brown (10R 4/8) Weathered Shale
			-	4	ROCK	
3 - 5	S-2	BAG	4.0	_		
			5.0	1		
						Soil Profile Pit SPP-8 Terminated at a Depth of 5.0 Feet Below Ground Surface
			-	1		
			6.0	4		
			_	_		
			7.0			
				1		
			8.0	1		
			0.0	1		
			_	4		
			9.0	_		
			_			
			10.0	1		
			l —	1		
			-	1		
			11.0	4		
			_	1		
			12.0			
			13.0	1		
			13.0	1		
			-	-		
			14.0	4		
			_]		
			15.0			
			l –	1		
				<u> </u>		

APPENDIX B Laboratory Test Results

					1111111			
0/ .3"	% G	ravel		% Sand	l	% Fines		
% +3"	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	0.0	2.0	0.2	24.2	25.5	48.1		

SIEVE	PERCENT	SPEC.*	PASS?
SIZE	FINER	PERCENT	(X=NO)
3	100.0		
2	100.0		
1.5	100.0		
1	100.0		
.75	100.0		
.375	98.0		
#4	98.0		
#10	97.8		
#20	90.4		
#40	73.6		
#60	62.4		
#140	50.7		
#200	48.1		
	3 2 1.5 1 .75 .375 #4 #10 #20 #40 #60 #140	SIZE FINER 3 100.0 2 100.0 1.5 100.0 1 100.0 .75 100.0 .375 98.0 #4 98.0 #10 97.8 #20 90.4 #40 73.6 #60 62.4 #140 50.7	SIZE FINER PERCENT 3 100.0 2 100.0 1.5 100.0 1 100.0 .75 100.0 .375 98.0 #4 98.0 #10 97.8 #20 90.4 #40 73.6 #60 62.4 #140 50.7

Clayey Sand	Material Descripti	<u>on</u>
PL= 19	Atterberg Limits	PI= 13
D ₉₀ = 0.8306 D ₅₀ = 0.0974 D ₁₀ =	Coefficients D ₈₅ = 0.6627 D ₃₀ = C _u =	D ₆₀ = 0.2184 D ₁₅ = C _c =
USCS= SC	Classification AASH	TO= A-6(3)
$W_n = 21.9 \%$	<u>Remarks</u>	

(no specification provided)

Source of Sample: B-1 **Sample Number:** S-2

Depth: 2.0' - 4.0'

WHITESTONE ASSOCIATES, INC. Warren, New Jersey Client: Bohler Engineering NJ, LLC

Project: L'Oreal Distribution Facility - Proposed Expansion

100 Commerce Drive, Franklin, Somerset County, New Jersey

Date: 09/24/2021

Project No: GJ2118293.000 Figure

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-1 Sample No.: Sample ID: Depth: Client: BENJ 3.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number A Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-1 Sample No.: Sample ID: T-1 Depth: Client: BENJ 3.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 2.50 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 72.36 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_____ Other - Specify ____

Sample ID:	Profile Pit No.:	SPP-2 San	nple No.:	<u>T-1</u>	_Depth:	4.0'	Project: Proposed Expansion Client: BENJ
COUNTY/MUN	CIPALITY Franklin		BLOCK		LOT		Lab Tech: MK
1. Test Number	1	Replicate (letter)	A	Date Colle	ected _		<u> </u>
2. Material Tes	ted:	Fill X	Test in N	lative Soil			
3. Type of Sam	ple: X	Undisturbed		Disturbed			
4. Sample Dim	ensions:	Inside Radius of Sa Length of Sample,		R, in cm	1.91 3.00		
5. Bulk Density	Determination (Distu	rbed Samples Only):	N/A				
6. Sample Wei	ght (Wt. Tube Contair	ning Sample-Wt. of Er	mpty Tube), ເ	grams	0.00		Wt. of Tube Containing Sample Wt. of Empty Tube
7. Sample Volu	me (L x 2.54 cm./inch	n x 3.14R2), cc.			86.83		wt. or Empty Tube
8. Bulk Density	(Sample Wt./Sample	Volume), grams/cc.			0	> 1.2	
9. Standpipe U	sed: X	No	Yes, Inc	dicate Interna	al Radius, cm	. N/A	
10. Height of W	/ater Level Above Rin	n of Test Basin, in inc	hes:				
	the Beginning of Eac the End of Each Tes		5.0 5.0				
11. Rate of Wa	ter Level Drop (Add a	additional lines if need	ed):				
	Time, Start of Test Interval, T1	Time End of Tes Interval T2		th of Test , T, Minutes			
			6	0.00			
_			6	0.00	_		
			6	0.00	_		
12. Calculation	of Permeability:	K, (in/hr) = 60 min/	hr x r2/R2 x L	_(in)/T(min)	x In (H1/H2)	T=	60.00
К	(in/hr) = 0.00	Classif	ication:	K0			
13. Defects in t	he Sample (Check ap	opropriate items):					
	None						
_	Soil/Tube Co	ontactLarge	e Gravel		_ Large Roots	3	
_	Dry Soil	Smearing		Compact	tion		

Project: Proposed Expansion Profile Pit No.: SPP-2 Sample No.: Sample ID: Depth: Client: BENJ 4.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction _ Other - Specify __

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-3 Sample No.: Sample ID: Depth: Client: BENJ 3.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number A Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-3 Sample No.: Sample ID: T-1 Depth: Client: BENJ 3.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-4 Sample No.: Sample ID: Depth: Client: BENJ 2.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number A Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-4 Sample No.: Sample ID: T-1 Depth: Client: BENJ 2.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_____ Other - Specify ____

Sample ID:	Profile	Pit No.:	SPP-5	Samp	le No.:	<u>T-1</u>	Depth:	4.0'	Project: Proposed Expansion Client: BENJ
COUNTY/MUNI	CIPALITY	/ Franklin			BLOCK		LOT		Lab Tech: MK
1. Test Number		1	_Replicate (le	etter)	A	Date Coll	ected		<u></u>
2. Material Tes	ted:		_Fill _	Х	Test in N	lative Soil			
3. Type of Sam	ple:	X	_ Undisturbed	l		Disturbed	I		
4. Sample Dime	ensions:		Inside Radiu Length of Sa			R, in cm	1.91 2.50		
5. Bulk Density	Determin	ation (Distur	bed Samples	Only): N	I/A				
6. Sample Wei	ght (Wt. T	ube Contain	ing Sample-W	t. of Emp	ty Tube), g	grams	0.00		Wt. of Tube Containing Sample Wt. of Empty Tube
7. Sample Volu	me (L x 2	.54 cm./inch	x 3.14R2), co	.			72.36		Wt. of Empty Tube
8. Bulk Density	(Sample	Wt./Sample	Volume), grar	ms/cc.			0	> 1.2	2
9. Standpipe U	sed:	X	_No _		Yes, Inc	dicate Intern	al Radius, cm	n. N/A	
10. Height of W	ater Leve	l Above Rim	of Test Basir	n, in inche	s:				
			h Test Interva Interval, H2	I, H1	5.0 5.0				
11. Rate of Wa	ter Level I	Drop (Add ad	dditional lines	if needed):				
		art of Test rval, T1	Time End Interva		-	th of Test , T, Minutes			
					6	0.00			
					6	0.00			
					6	0.00	1		
12. Calculation		•	K, (in/hr) = 6	00 min/hr		_(in)/T(min) :	x In (H1/H2)	T=	60.00
	(in/hr) =	0.00	_		ition:	KU			
13. Defects in t	ne Sampi	, , ,	propriate item	s):					
_		_None	-44	1				_	
_			ntact	_ •	iravel			S	
_		Ory Soil	Sme	earing _		Compac	tion		

_____ Other - Specify ____

COUNTY/MUNICIPALITY Franklin 1. Replicate (letter) B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: X Undisturbed Disturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Sample-Wt. of Empty Tube), grams 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wtt/Sample Volume), grams/cc. 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. At the End of Each Test Interval, H2 Standpipe Used: Time, Start of Test Interval, H2 Start of Test Interval, H2 Start of Test Interval, T1 Interval, T1 Interval, T2 Interval, T, Minutes K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	Sample ID:	Profile	Pit No.:	SPP-5	Sampl	le No.:	T-1	Depth:	4.0'	Project: Proposed Expansion Client: BENJ
2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: X Undisturbed Disturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in Inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Tube Containing Sample Wt. of Empty Tube), grams 0.00 Wt. of Tube Containing Sample Wt. of Empty Tube Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 At the End of Each Test Interval, H2 1.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T = 60.00 K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	COUNTY/MUNI	CIPALITY	/ Franklin			BLOCK		LOT		Lab Tecn: MK
3. Type of Sample: X Undisturbed Disturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Tube Containing Sample Wt. of Empty Tube (Lx 2.54 cm./inch x 3.14R2), cc. 86.83 7. Sample Volume (Lx 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt/Sample Wt/Sample Volume), grams/cc. 0 > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval, T, Minutes 60.00 60.00 60.00 60.00 60.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	1. Test Number		1	_Replicate (le	etter)	В	Date Coll	ected		<u> </u>
4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval, T1 Ime End of Test Interval, T, Minutes 60.00 60.00 60.00 60.00 71. Classification: K0 13. Defects in the Sample (Check appropriate items):	Material Test	ted:		_Fill _	Х	Test in N	lative Soil			
Length of Sample, L, in inches 5. Bulk Density Determination (Disturbed Samples Only): N/A 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Vt./Sample Volume), grams/cc. 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 Time, Start of Test Interval, T1 Interval T2 Length of Test Interval, T, Minutes 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T= 60.00 13. Defects in the Sample (Check appropriate items):	3. Type of Sam	ple:	X	Undisturbed			Disturbed	I		
6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams	4. Sample Dime	ensions:					R, in cm			
7. Sample Volume (L x 2.54 cm./linch x 3.14R2), cc. 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval, T1 Interval, T2 Interval, T, Minutes 60.00 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	5. Bulk Density	Determin	ation (Distur	bed Samples	Only): N	/A				
7. Sample Volume (L x 2.54 cm/inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 5.00 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval T2 Length of Test Interval, T, Minutes	6. Sample Weig	ght (Wt. T	ube Contain	ing Sample-W	t. of Emp	ty Tube), g	grams	0.00		
9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 Time, Start of Test Interval, T1 Time, Start of Test Interval, T2 Interval, T, Minutes 60.00 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 0.00 Classification: K0 Yes, Indicate Internal Radius, cm. N/A Yes, Indicate Internal Radius, cm. N/A 15.00 16.00 17.00 18.00 19.00 19.00 Classification: K0 19.00 10.00 10.00 11. Rate of Water Level Above Rim of Test Interval, H1 Subject to Test Interval, T, Minutes 10.00 Classification: K0 10.00 11. Rate of Water Level Above Rim of Test Interval, H1 Subject to Test Interval, T, Minutes 10.00 Classification: K0	7. Sample Volu	me (L x 2	.54 cm./inch	x 3.14R2), co	: .			86.83		W. or Empty Tube
10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1	8. Bulk Density	(Sample	Wt./Sample	Volume), grar	ms/cc.			0	> 1.2	
At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval, T1 Time End of Test Interval, T, Minutes 60.00 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	9. Standpipe Us	sed:	X	_No _		Yes, Inc	dicate Intern	al Radius, cm	n. N/A	
At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Interval, T1 Interval, T2 Interval, T, Minutes 60.00 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T= 60.00 K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	10. Height of W	/ater Leve	l Above Rim	of Test Basin	n, in inche	s:				
Time, Start of Test Interval T2 Interval, T, Minutes 60.00 60.00 60.00 12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T = 60.00 K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):					I, H1					
Interval, T1	11. Rate of Wat	ter Level I	Drop (Add a	dditional lines	if needed):				
12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T = 60.00 K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):						-				
12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T= 60.00 K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):						6	0.00			
12. Calculation of Permeability: K, (in/hr) = 60 min/hr x r2/R2 x L(in)/T(min) x ln (H1/H2) T= 60.00 K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):						6	0.00			
K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):	_					6	0.00	4		
K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items):										
13. Defects in the Sample (Check appropriate items):			•				. , . ,	x In (H1/H2)	T=	60.00
		` ,		_						
None	20.00.0	camp.	None	propriato itorii	- /.					
Soil/Tube Contact Large Gravel Large Roots		į.		ntact	Large G	Gravel		Large Root	s	
Dry Soil Smearing Compaction	_				_			_ `	-	

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-6 Sample No.: Sample ID: Depth: Client: BENJ 2.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number A Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-6 Sample No.: Client: BENJ Sample ID: T-1 Depth: 2.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 2.50 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 72.36 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-7 Sample No.: Sample ID: Depth: Client: BENJ 3.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number ____A __ Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 2.50 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 72.36 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-7 Sample No.: Sample ID: T-1 Depth: Client: BENJ 3.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-8 Sample No.: Sample ID: Depth: Client: BENJ 2.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number A Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

_ Other - Specify __

Project: Proposed Expansion Profile Pit No.: SPP-8 Sample No.: Sample ID: T-1 Depth: Client: BENJ 2.0' Lab Tech: MK COUNTY/MUNICIPALITY Franklin BLOCK LOT 1 ____ Replicate (letter) 1. Test Number B Date Collected 2. Material Tested: Fill X Test in Native Soil 3. Type of Sample: Undisturbed 4. Sample Dimensions: Inside Radius of Sample Tube, R, in cm Length of Sample, L, in inches 3.00 5. Bulk Density Determination (Disturbed Samples Only): N/A Wt. of Tube Containing Sample _ 6. Sample Weight (Wt. Tube Containing Sample-Wt. of Empty Tube), grams 0.00 Wt. of Empty Tube 7. Sample Volume (L x 2.54 cm./inch x 3.14R2), cc. 86.83 8. Bulk Density (Sample Wt./Sample Volume), grams/cc. 0 _ > 1.2 9. Standpipe Used: X No Yes, Indicate Internal Radius, cm. N/A 10. Height of Water Level Above Rim of Test Basin, in inches: At the Beginning of Each Test Interval, H1 At the End of Each Test Interval, H2 5.00 11. Rate of Water Level Drop (Add additional lines if needed): Time, Start of Test Time End of Test Length of Test Interval, T1 Interval T2 Interval, T, Minutes 60.00 60.00 60.00 K, $(in/hr) = 60 \text{ min/hr} \times r2/R2 \times L(in)/T(min) \times ln (H1/H2)$ T= 60.00 12. Calculation of Permeability: K (in/hr) = 0.00 Classification: K0 13. Defects in the Sample (Check appropriate items): None Soil/Tube Contact _____Large Gravel _____ Large Roots ______ Dry Soil _______ Smearing ______ Compaction

APPENDIX C Supplemental Information (USCS, Terms & Symbols)

UNIFIED SOIL CLASSIFICATION SYSTEM

SOIL CLASSIFICATION CHART

ı	MAJOR DIVISIONS		LETTER SYMBOL	TYPICAL DESCRIPTIONS
	GRAVEL AND	CLEAN GRAVELS	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES
	GRAVELLY SOILS	(LITTLE OR NO FINES)	GP	POORLY-GRADED GRAVELS, GRAVEL- SAND MIXTURES, LITTLE OR NO FINES
COARSE GRAINED SOILS	MORE THAN 50% OF COARSE FRACTION	GRAVELS WITH FINES	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES
00.120	RETAINED ON NO. 4 SIEVE	(APPRECIABLE AMOUNT OF FINES)	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES
	SAND AND SANDY	CLEAN SAND (LITTLE OR NO	sw	WELL-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
	SOILS	FINES)	SP	POORLY-GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES
MORE THAN	MORE THAN 50% OF	SANDS WITH	SM	SILTY SANDS, SAND-SILT MIXTURES
50% OF MATERIAL IS LARGER THAN NO. 200 SIEVE SIZE	COARSE FRACTION PASSING NO. 4 SIEVE	FINES (APPRECIABLE AMOUNT OF FINES)	SC	CLAYEY SANDS, SAND-CLAY MIXTURES
FINE	SILTS	LIQUID LIMITS	ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY
GRAINED SOILS	AND CLAYS	LESS THAN 50	CL	INORGANIC CLAYS OF LOW TO MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS, LEAN CLAYS
			OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY
MORE THAN 50% OF MATERIAL IS	011.70		МН	INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS FINE SAND OR SILTY SOILS
SMALLER THAN NO. 200 SIEVE	SILTS AND CLAYS	LIQUID LIMITS <u>GREATER</u> THAN 50	СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS
SIZE			ОН	ORGANIC CLAYS OF MEDIUM TO HIGH PLASTICITY, ORGANIC SILTS
ŀ	HIGHLY ORGANIC SOILS		PT	PEAT, HUMUS, SWAMP SOILS WITH HIGH ORGANIC CONTENTS

NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS FOR SAMPLES WITH 5% TO 12% FINES

GRADATION*	COMPACTNESS* Sand and/or Gravel	CONSISTENCY* Clay and/or Silt
% FINER BY WEIGHT	RELATIVE DENSITY	RANGE OF SHEARING STRENGTH IN POUNDS PER SQUARE FOOT
TRACE 1% TO 10% LITTLE 10% TO 20% SOME 20% TO 35% AND 35% TO 50%	LOOSE	VERY SOFT LESS THAN 250 SOFT

^{*} VALUES ARE FROM LABORATORY OR FIELD TEST DATA, WHERE APPLICABLE. WHEN NO TESTING WAS PERFORMED, VALUES ARE ESTIMATED.

Other Office Locations:

CHALFONT, PA 215.712.2700

SOUTHBOROUGH, MA 508.485.0755

ROCKY HILL, CT 860.726.7889

WALL, NJ 732.592.2101 PHILADELPHIA, PA 215.848.2323

GEOTECHNICAL TERMS AND SYMBOLS

SAMPLE IDENTIFICATION

The Unified Soil Classification System is used to identify the soil unless otherwise noted.

SOIL PROPERTY SYMBOLS

N: Standard Penetration Value: Blows per ft. of a 140 lb. hammer falling 30" on a 2" O.D. split-spoon.

Qu: Unconfined compressive strength, TSF.

Qp: Penetrometer value, unconfined compressive strength, TSF.

Mc: Moisture content, %.LL: Liquid limit, %.PI: Plasticity index, %.dd: Natural dry density, PCF.

▼: Apparent groundwater level at time noted after completion of boring.

DRILLING AND SAMPLING SYMBOLS

NE: Not Encountered (Groundwater was not encountered). SS: Split-Spoon - 1 3/8" I.D., 2" O.D., except where noted.

ST: Shelby Tube - 3" O.D., except where noted.

AU: Auger Sample.
OB: Diamond Bit.
CB: Carbide Bit
WS: Washed Sample.

RELATIVE DENSITY AND CONSISTENCY CLASSIFICATION

Term (Non-Cohesive Soils)

Standard Penetration Resistance

Very Loose	0-4
Loose	4-10
Medium Dense	10-30
Dense	30-50
Very Dense	Over 50

Term (Cohesive Soils) Qu (TSF)

Very Soft	0 - 0.25
Soft	0.25 - 0.50
Firm (Medium)	0.50 - 1.00
Stiff	1.00 - 2.00
Very Stiff	2.00 - 4.00
Hard	4.00+

PARTICLE SIZE

Boulders	8 in.+	Coarse Sand	5mm-0.6mm	Silt	0.074mm-0.005mm
Cobbles	8 in3 in.	Medium Sand	0.6mm-0.2mm	Clay	-0.005mm
Gravel	3 in -5mm	Fine Sand	0.2 mm - 0.074 mm	•	

L:\Geotechnical Forms and References\Reports\USCSTRMSSYM NJ.docx

Other Office Locations:

CHALFONT, PA SOUTHBOROUGH, MA ROCKY HILL, CT WALL, NJ PHILADELPHIA, PA 215.712.2700 508.485.0755 860.726.7889 732.592.2101 215.848.2323