STORMWATER MANAGEMENT FACILITIES MAINTENANCE MANUAL

Prepared for

PROPOSED WAREHOUSE COMPLEX BUILDINGS A & B

BLOCK 88.02, LOT 13.01

TOWNSHIP OF FRANKLIN SOMERSET COUNTY, NEW JERSEY

Prepared by:

PAULUS, SOKOLOWSKI AND SARTOR, ARCHITECTURE AND ENGINEERING PC

3 Mountainview Road Warren, New Jersey 07059

PS&S Job No. 04596-0014

Craig P. Hermann, P.E. Professional Engineer New Jersey License No. 45107

> April 2022 Revised March 2023

April 2022

Stormwater Management Facilities Maintenance Manual

STORMWATER MANAGEMENT MEASURES

Maintenance Plan & Field Manuals

Development Name: Proposed Warehouse Complex – Buildings A & B

Address: _____

Block(s) / Lot(s): Block 88.02, Lot 13.01

Township, County: Township of Franklin, Somerset County, New Jersey

Party Responsible for Maintenance:

EL-ION Frankline Partners, LLC

Address: <u>3323 NE 163rd Street</u>, Suite 600

Contact Person(s): Michael Stellino

Phone: (305) 933-3538

Prepared by: Craig P. Hermann, PE

Date: <u>April 6, 2022</u>

This plan is recorded in

Deed Book #	Page #	with	
-------------	--------	------	--

County Clerk on Date _____

Last Revised on ____ / ____

April 2022

Stormwater Management Facilities Maintenance Manual

TABLE OF CONTENTS

Part I – Maintenance

5
8
9
15
17
18
21
22
24
26

Part II - Field Manuals and Maintenance Records

PERVIOUS PAVING SYSTEM MANUAL	28
STANDARD CONSTRUCTED WETLAND MANUAL	

APPENDICES

APPENDIX A – LOCATION PLAN APPENDIX B – AS-BUILT DRAWINGS WITH DRAINAGE PLANS AND LANDSCAPE PLANS APPENDIX C – GEOTECHNICAL REPORT APPENDIX D – STORMWATER MANAGEMENT REPORT

PART I – MAINTENANCE

INTRODUCTION

This document has been prepared to provide direction in the maintenance of the Stormwater Management Facilities (SWMF) for the Proposed Warehouse Complex – Buildings A & B to be located in the Township of Franklin, Somerset County, New Jersey. This manual addresses the maintenance issues for the specific components of the stormwater system: one (1) Wetland Basin, and pervious pavement areas. This manual also addresses the functional maintenance category, as represented by the preventative maintenance component and the corrective maintenance component.

N.J.D.E.P. requires the following procedures be followed as per N.J.A.C. 7:8-5.8:

- Copies of the maintenance plan must be provided to the owner and operator of the stormwater management measure. Copies must also be submitted to all reviewing agencies as part of each agency's approval process. In addition, a copy should be provided to the local mosquito control or extermination commission upon request.
- 2. The title and date of the maintenance plan and the name, address, and telephone number of the person with stormwater management measure maintenance responsibility as specified in the plan must be recorded on the deed of the property on which the measure is located. Any change in this information, for example to a change in property ownership, must also be recorded on the deed.
- 3. The person with maintenance responsibility must evaluate the maintenance plan for effectiveness at least annually and revise, as necessary.
- A detailed, written log of all preventative and corrective maintenance performed at the stormwater management measure must be kept onsite, including a record of all inspections and copies of maintenance-related work orders.
- 5. The person with maintenance responsibility must retain and, upon request, make available the maintenance plan and associated logs and other records for review by a public entity with administrative, health, environmental, or safety authority over the site.

Functional Maintenance

Functional Maintenance is the maintenance required to keep a SWMF functional or operational at all times. Functional Maintenance includes both preventative (routine) maintenance and corrective (emergency) maintenance.

1. Preventative Maintenance: Preventative maintenance includes functional maintenance

procedures that are required to maintain a SWMF's intended operation and safe condition by preventing the occurrence of problems and malfunctions. Preventative maintenance will be performed in accordance with the direction as presented in this manual. Typical routine procedures include sediment removal from after runoff has drained. Since it is performed on a regular basis, preventative maintenance is simpler to schedule and budget for and, ultimately, is easier and less expensive to perform than corrective maintenance.

2. Corrective Maintenance: Corrective maintenance includes the functional maintenance procedures that are required to correct a problem or malfunction at a SWMF and to restore the facility's intended operation and safe condition. Based upon the severity of the problem, corrective maintenance must be performed on an as-needed or emergency basis and includes such procedures as structural repairs, mosquito control, and non-vegetated linings. By its nature, corrective maintenance is much more difficult to schedule and budget for and, ultimately, is generally more difficult and expensive to perform than preventative maintenance.

Aesthetic Maintenance

Aesthetic maintenance is the maintenance required to enhance or maintain the visual appeal of a facility. The storm water facilities have been designed to be an integral component of the development. As such, these facilities should not have an impact on the aesthetic quality of the development as a whole.

Project Description

The proposed Warehouse Complex – Buildings A & B, is located in the Township of Franklin, Somerset County, New Jersey. The site is otherwise known as Tax Block 88.02, Lots 13.01, 71.01, and 19. The site is bounded by commercial developments along Route 27 to the northeast, commercial developments along Veronica Avenue, wooded and wetland areas located to the northwest. In addition, a Milestone River tributary runs along the northwest side of the property. Wooded, farm/agricultural land with some residential developments are located to the southwest. Commercial developments along Bennetts Lane and Route 27 are located to the southeast. The lot generally grades down from northeast to southwest towards the existing wetlands and Milestone River tributary.

EL-ION Frankline Partners, LLC (the Applicant) is proposing the construction of two (2)April 2022Stormwater Management Facilities Maintenance ManualPage 6/64

warehouse buildings (identified as buildings A & B) within the northeast portion of the property, associated pervious pavement parking and loading area, a proposed access driveway along the northeast side of the proposed buildings, and associated utilities. A proposed wetland basin to the west of the proposed development area, a proposed firepump house, and modular block retaining walls will also be constructed as part of the project. In addition, a vegetated swale will be constructed along the southeast and southwest sides of the property to direct the offsite runoff around the proposed development to the existing wetland area.

Stormwater runoff under developed conditions will be collected by a proposed drainage system consisting of a series of inlets, pipes, and pervious pavement areas that will convey water to a proposed wetland basin. The stormwater quality control will occur at the proposed pavement areas and stormwater quantity control will occur at the wetland basin which outfalls into the existing wetland area.

LIST OF STORMWATER MANAGEMENT MEASURES

The stormwater management measures incorporated into this development are listed below. The corresponding Location Map is included in Appendix A.

Type of Stormwater Management Measure	BMP No	Location Description
Wetland Basin	WB-1	Within the western portion of the proposed development area
Pervious Pavement	PPVMT-1 through PPVMT-10	Parking areas and driveways
Point of Discharge	POA-1	Western portion of proposed wetland basing

PREVENTATIVE AND CORRECTIVE MAINTENANCE ACTION PLAN

As per N.J.A.C. 7:8-5.8(b) & (e), preventative and corrective maintenance shall be performed to maintain the function of the stormwater management measure, including, but not limited to, repairs or replacement to the structure; removal of sediment, debris, or trash; restoration of eroded areas; snow and ice removal; fence repair or replacement; restoration of vegetation; and repair or replacement of non-vegetated linings.

<u>Preventative Maintenance Actions</u>

The purpose of preventative maintenance is to assure that a SWMF always remains operational and safe, while minimizing the need for emergency or corrective maintenance.

All access way coverage shall be maintained in passable condition to allow a maintenance vehicle to traverse the road access way.

Frequency	Preventative Maintenance Actions	Stormwater Measures/ No.
Bi-weekly	 Wetland basing inspection required when vegetation establishing / restoring. Wetland basin vegetation mowing /trimming and removal in growing season. Disposal of debris, trash, sediment and other waste material must be done at suitable disposal/recycling sites and in compliance with all applicable local, state and federal waste regulations. 	Wetland basin and pervious pavement
Monthly	 Grass should be mowed during the growing season. Trees, shrubs, and underbrush must be pruned or trimmed as necessary to maintain access. Use of fertilizers, pesticides, mechanical treatments and other means to ensure optimum vegetation must not compromise the intended purpose of the standard constructed wetland. 	Wetland basin
Biennial	 Inspect vegetated areas for erosion, scour and unwanted growth. Removal of trash and debris will prevent possible damage to vegetated areas and eliminate potential mosquito breeding habitats. A minimum of one inspection during the growing season and one during the non-growing season is required to ensure the health, density, and diversity of the vegetation. Assess types and distribution of dominant plans, and appropriate balance between original and volunteer 	Wetland basin

Frequency	Preventative Maintenance Actions	Stormwater Measures/ No.
	species in accordance with the intent of the system's original design.	
Biennial	 The drain time and water depth as indicated in the maintenance manual should be documenting and maintained during each observation. Drain time and water depth should be compared with the design drain time for the maximum design storm runoff volume and water depth as indicated in the maintenance manual. Inspect components expected to receive and/or trap debris. The facility inspections should also be used to determine the need for and timing of corrective maintenance procedures. It should be noted that, in addition to regularly scheduled inspections, an informal inspection should be performed during every visit to a SWMF by maintenance or supervisor personnel. 	Wetland basin and pervious pavement
Quarterly	• The surface course of a pervious paving system must be vacuum swept, not power swept. Vacuum sweeping must be followed by either air blowing or high-pressure power washing performed in accordance with the specifications recommended for the system. All dislodged material must be promptly removed.	Pervious Pavement
Annual	 All structural components must be inspected for cracking, spalling, erosion, deterioration, and unwanted vegetation. The first annual maintenance of the pervious pavement system must be performed in the spring. Maintenance of a pervious pavement system must additionally be performed in the autumn, after the fallen leaves are collected and removed. Each spring, after the last snow or ice event, the infiltration rate of the surface course of the pervious pavement system must be tested in accordance with the methods of either ASTM C1701 or C1781, as corresponds to the post-construction test performed for the system. At least 3 locations must be tested. One of the locations must be in an area where sediment is most likely to be deposited, such as, but not limited to, a parking lot entrance. The other test locations must be evenly spaced across the system 	Wetland basin, and pervious pavement

Frequency	Preventative Maintenance Actions	Stormwater Measures/ No.
	surface. The locations and results obtained must be recorded in the maintenance plan for future reference and compared to the as-built testing results as a metric for determining if a system requires corrective action.	
Unscheduled	 Quick inspection after every 1" rain. Snow and ice, especially from areas treated with sand, cinders or de-icing materials, may not be stockpiled on a SWMF. Care must be taken when removing snow from the surface course; pervious paving surface courses may be damaged by snowplows or loader buckets set too low to the ground or not equipped with a rubber blade guard. Under no circumstances may any sealants or coatings be applied to pervious paving systems, except for those approved by the manufacturer to improve surface course resistance to de-icing chemicals or refresh traffic striping. De-icing chemicals may not be used on pervious concrete less than one year old. De-icers containing magnesium chloride, calcium magnesium acetate or potassium acetate may never be used on pervious concrete. 	Wetland basin, and pervious pavement

The chart provided below shows the approximate infiltration rate based upon the time it takes to infiltrate either 8 or 40 pounds of water specified in the above-cited tests. The infiltration rate, *II*, is based upon the following calculation:

II = (KK * MM) / (DD2 * tt), where

K = 126,870 in-lbs M = water mass, lbs D = ring diameter = 12 inches t = time, in seconds

Test Methods Per ASTM C1701 or C1781		
Time to Infiltrate the	Approximate Surface Infiltration Rate (inches per hour)	
Specified Amount of Water (seconds)	M = 8 lbs	M = 40 lbs
30	235	1175
60	118	587
100	70.5	352
200	35.2	176
350	20.1	100.7
360	19.6	97.9
380	18.5	92.7
900	7.8	39.2
1760	4.0	20.0
1910	3.7	18.5
3600	2.0	9.8
5400	1.3	6.5
5470	1.3	6.4
6000	1.2	5.9

Note: should the test be performed with a different quantity of water, the values in the chart above cannot be used.

<u>Corrective Maintenance Actions</u>

Depending on many factors, such as the performance of preventative maintenance actions, weather, or unexpected incidents, corrective maintenance requirements may not be precisely anticipated; however, a list of potential corrective maintenance actions may assist the responsible party in planning and estimating costs in advance.

Corrective maintenance includes the functional maintenance procedures that are required to correct a problem or malfunction at a SWMF and to restore the facility's intended operation and safe condition. Based upon the severity of the problem, corrective maintenance must be performed on an as needed or emergency basis and includes such procedures as structural repairs. By its nature, corrective maintenance is much more difficult to schedule and budget for and, ultimately, is generally more difficult and expensive to perform than preventative maintenance.

Potential Corrective	Stormwater Management
Maintenance Actions	Measures/No.
 Repair/replacement of eroded or damaged riprap apron. Revegetation of eroded side slope, aquatic bench and basin bottom. Repair/replacement of outlet pipes or orifices. 	Wetland basin

•	If the actual drain time of the wetland basin is significantly different from the design drain time, the components that could provide hydraulic control must be evaluated and appropriate measures taken to return the wetland system to the design drain time.	
•	Sediment, debris, leaves and trash which threaten the discharge capacity of a SWMF should be removed immediately and properly disposed of in a timely manner. Equipment and personnel must be available to perform the removal work on short notice. The lack of an available disposal site should not delay the removal of trash, debris, and sediment. Temporary disposal sites should be identified and available for immediate use. A list of qualified contractors shall be maintained in order to respond to this situation. Stormwater BMPs may not be used for stockpiling of plowed snow and ice, compost, or any other materials. Provide the equipment, materials, and personnel to monitor and remove snow and ice from these critical areas as necessary to assure the continued functioning of the facility during the winter months.	Wetland basin, and pervious pavement
•	 If the pervious pavement fail to drain the Water Quality Design Storm within 72 hours, corrective action must be taken, and the maintenance manual revised accordingly to prevent similar drainage failure in the future. ✓ Inspect if overflow structures and/or storm sewer inlets and/or pipes are clogged; ✓ Remove any sediment buildup; ✓ Check the soil permeability; ✓ If standing water is present longer than 5 days, report to mosquito commission. A list of qualified consultants and contractors shall be maintained in order to undertake the drainage failure investigation / analysis and repairs in a timely fashion. If mud or sediment is tracked onto the surface course, it must be removed as soon as possible. Removal should take place when all runoff has drained from the surface course. Herbicides must not be applied. Corrective action must be immediately taken to restore the infiltration capacity of the pervious paving system if the infiltration test for the system is 6.4 or less for a system designed for water quality control only. Over the lifetime of the surface course, no more than 10% of its surface area may be patched with impervious material such as bituminous asphalt or concrete. All patching must be recorded in the maintenance manual for future reference to prevent exceedance of this maximum. 	Pervious pavement

• Inspection and Logs of All Preventative and Corrective Maintenance

As per N.J.A.C. 7:8-5.8(f), the person responsible for maintenance shall maintain a detailed log of all preventative and corrective maintenance for the structural stormwater management measures incorporated into the design of the development, including a record of all inspections and copies of all maintenance-related work orders.

As per NJDEP BMP Manual, a schedule of regular inspections and tasks, detailed logs of all preventative and corrective maintenance and maintenance-related work orders performed on the stormwater management measures are provided in the Part II of this maintenance plan. The person with maintenance responsibility must retain and, upon request, make available the maintenance plan and associated logs and other records for review by a public entity with administrative, health, environmental, or safety authority over the site.

Inspection Checklists in the Part II of this Field Manual for the stormwater management measures on this site include:

- Wetland Basin Checklist Log
- Wetland Basin Preventative Maintenance Log
- Wetland Basin Corrective Maintenance Log
- Pervious Pavement Inspection Checklist Log
- Pervious Pavement Preventative Maintenance Log
- Pervious Pavement Corrective Maintenance Log

The logs of all inspections, and both preventative and corrective maintenance performed are attached in the "Maintenance Logs and Inspection Records" section. See Part II of the Maintenance Plan.

MAINTENANCE PERSONNEL, EQUIPMENT, TOOLS, AND SUPPLIES

The following is a list of required inspection equipment for routine maintenance procedures and inspections.

<u>Maintenance Personnel/Equipment/Tools/Supplies</u>

Personnel/Equipment/Tools Name	Quantity
General maintenance crew	2 laborers
Debris, Trash and Sediment Removal Tools & Equipment:	•
Shovels	2
Rakes	2
Picks	2
Wheelbarrows	1
Loader	1
Lightweight backhoe	1
Vacuum Truck	1
Water Jetting Units	1
Transportation Equipment:	
Truck For Transportation of Materials	1
Truck For Transportation of Equipment	1
Vehicles For Transportation of Personnel	1
Miscellaneous Equipment:	
A clipboard, a pencil, and the inspection checklist	1
A standard 6-foot collapsible ruler	1
A camera-photographs to record conditions of the facilities	1

A flashlight to observe the inside of subsurface trench drain	1
Working Garments/ Gloves/ Protective measure	2
A measuring tape	1

DISPOSAL PLAN

As per NJDEP BMP Manual, the maintenance plan should include approved disposal and recycling sites and procedures for sediment, trash, debris and other material removed from stormwater management measures during maintenance operations.

Disposal/Recycling Procedures •

Dewatering shall be filtered through sediment control tanks or bags. Bags must be located away from receiving waters, other environmentally sensitive areas, and/or construction activities. Bags must be installed per manufacturer's requirements. Bags must be disposed of according to manufacturer's instructions.

- Disposal Field Onsite not permitted
- Permits for the Proposed Onsite Disposal Field \Box not required

Local/State permits

 \Box required

 \boxtimes not applicable

Disposal Field - Offsite At approved receiving site in accordance with NJDEP guidelines.

Description of the Offsite Disposal •

By the township, by a private operator and conveyance entity, etc.

A copy of the contract should be included in the Documents section of the Maintenance Plan if available.

COST ESTIMATE

• <u>Cost Overview</u>

Cost Type	Cost	Details
Cost of sediment, trash, and debris removal. Vegetation mowing /trimming in growing season.	\$280.00	2 laborers crew at \$70.00 per hour
General cost for routine quarterly maintenance	\$1,610.00	Table A
General cost – unscheduled maintenance	\$161.00	Table B
Cost associated with vegetation replacement and sand layer restoration if the permeability of the bed has decreased – biannually maintenance	\$2,921.00	Table C
Total cost \$4,972.00		4,972.00

Table A: General cost for quarterly routine maintenance.

Clean SSIB and test infiltration rates.

Cost Type	Required Quantity	Unit Price	Cost
Personnel			
Crew (1 laborer & 1 operator)	2 hours	\$170.00	\$340.00
Equipment			
Truck	2 hours	\$100.00	\$200.00
Mower	2 hours	\$100.00	\$200.00
Supplies			
Seed	(e.g., bags required)		
Topsoil	12 cubic yards	\$30.00	\$360.00
Working garments/ gloves/protective measures	LS		
Services			
Subcontractor for disposal	LS	\$300.00	\$300.00
Subtotal			

Cost Type	Required Quantity	Unit Price	Cost
			\$1,400.00
Overhead/Profit (15%)			
			\$210.00
Total Cost			
			\$1,610.00

Table A: General cost for quarterly routine maintenance.

Clean SSIB and test infiltration rates.

Cost Type	Required Quantity	Unit Price	Cost
Crew (2 laborers)	2 hours	\$70.00	\$140.00
Subtotal			\$140.00
Overhead/Profit (15%)			\$21.00
Total Cost			\$161.00

Table C: General cost for biannually maintenance.

Cost Type	Required Quantity	Unit Price	Cost
Personnel			
Crew (1 laborer & 1 operator)	2 hours	\$170.00	\$340.00
Equipment			
Truck	2 hours	\$100.00	\$200.00
Lightweight Backhoe rental	2 hours	\$100.00	\$200.00
Supplies			
Sand Layer Replacement	50 cubic yards	\$30.00	\$1,500.00
Services			

Cost Type	Required Quantity	Unit Price	Cost
Subcontractor for disposal	LS	\$300.00	\$300.00
Subtotal			\$2,540.00
Overhead/Profit (15%)			\$381.00
Total Cost			\$2,921.00

SAFETY MEASURES AND PROCEDURES

As per NJDEP BMP Manual, maintenance plans should include procedures and equipment required to protect the safety of inspection and maintenance personnel.

• Safety Regulations and Requirements

Maintenance and operation of stormwater management measures shall be in accordance with any applicable codes (i.e. OSHA)

• <u>Safety Tools, Equipment and Garments</u>

Safety Tools and Equipment	Location	Responsible Person/Contact #

• Qualification for Performing the Task in Special Circumstances

Stormwater Measures	Location	(OSHA) Confined-Space Entry Permit

<u>Safety Training</u>

See the Training Plan and Records section of this Maintenance Plan.

<u>Safety Procedures</u>

Use precaution before entering the BMPs, such as wearing safety ropes, checking whether hazardous gases are present, or checking whether poisonous plants are present. Follow safety procedures for operating equipment (e.g., signs around operation zones or slope stability when operating a backhoe). Safety to be in accordance with all applicable local, state, and federal laws and regulations, and the safety instructions provided by the equipment or device manufacturers.

• <u>Emergency Procedures</u>

Contact local authorities at 911, for emergencies.

TRAINING PLAN AND RECORDS

As per NJDEP BMP Manual, maintenance training begins with an understanding the purpose and function of the overall stormwater management measure and its major components. Such understanding will enable maintenance personnel to provide more effective component maintenance and more readily detect maintenance-related problems. Depending on the size, character, location, and components of each stormwater management measure, maintenance personnel may also require training in specialized inspection and maintenance tasks and/or the operation and care of specialized maintenance equipment. Training should also be provided in the need for and use of all required safety equipment and procedures.

- Training Plan
 - 1. Types of Training
 - Mandatory Stormwater Management Basic Training and Field Manual Usage Training for new maintenance crews
 - Occupational Safety Training
 - Subcontractor training, if applicable

2. Content of Training

- Stormwater Management Basic Training
 - a. Purposes and Functions of BMPs:
 - NJDEP Stormwater BMP Manual, Chapter Nine: Structural Stormwater Management Measures
 - Chapter 9.6 Pervious Paving System
 - NJDEP Stormwater BMP Manual, Chapter Ten: Structural Stormwater Management Measures
 - Chapter 10.4 Standard Constructed Wetlands
 - More training information is available at NJ Stormwater.org

http://www.nj.gov/dep/stormwater/training.htm

- b. Vegetation Care: Example Training Material
 - NJDEP Stormwater BMP Manual, Chapter Seven: Landscaping (provides information on vegetation and landscaping for stormwater management measures)
- c. Field Manual Usage Training: Example Training Material

Stormwater Management Facilities Maintenance Manual

- Field Manuals attached to this Maintenance Plan
- Other
- d. Equipment and Tools Operation Training: Example Training Material
 - Equipment or tool manufacturer's Operation & Maintenance Manual
 - Other
- e. Occupational Safety Training: Example Training Material
 - OSHA Training
 - Equipment or tool manufacturer's Operation & Maintenance Manual
 - Other
- 3. Training Records

Training attendance sheets should be attached by the responsible party after each training.

ANNUAL EVALUATION OF THE EFFECTIVENESS OF THE PLAN

As per N.J.A.C. 7:8-5.8(g), the person responsible for maintenance shall evaluate the effectiveness of the maintenance plan at least once per year and adjust the plan and the deed as needed.

The responsible party should evaluate the effectiveness of the maintenance plan by comparing the maintenance plan with the actual performance of the maintenance. The items to evaluate may include, but not limited to,

- Whether the inspections have been performed as scheduled; •
- Whether the preventive maintenance has been performed as scheduled;
- Whether the frequency of preventative maintenance needs to increase or decrease;
- Whether the planned resources were enough to perform the maintenance;
- Whether the repairs were completed on time;
- Whether the actual cost was consistent with the estimated cost; and
- Whether the inspection, maintenance, and repair records have been kept.

If actual performance of those items has been deviated from the maintenance plan, the responsible party should find the causes and implement solutions in a revised maintenance plan.

Evaluator(s)	Date of Evaluation	Decision
		Maintain current version OR
		Revise current version Revision date (also update the last revision date on the cover page)
		Requires a new deed recording (also update the last recording information on the cover page)
		Maintain current version OR
		Revise current version Revision date (also update the last revision date on the cover page)
		Requires a new deed recording (also update the last recording information on the cover page)
		Maintain current version OR
		Revise current version
122 Stor	mwater Management F	acilities Maintenance Manual Page 24/64

• Annual Evaluation Records

Evaluator(s)	Date of Evaluation	Decision
		Revision date (also update the last revision date on the cover page)
		Requires a new deed recording (also update the last recording information on the cover page)

REFERENCE DOCUMENTS

Reference Documents in this manual include the following:

- As-built Drawings with Drainage Plans and Landscape Drawings
- Geotechnical Report which includes:
 - 1. Soil Boring Logs
 - 2. Permeability Tests
- Stormwater Management Report

Check Maintenance Guidance in NJDEP Stormwater Management Website for details and links to the relevant permits and program areas (<u>http://www.njstormwater.org</u>).

Refer to the Appendices for copies of reference documents.

PART II – FIELD MANUALS

AND MAINTENANCE RECORDS

PERVIOUS PAVING SYSTEM MANUAL SYSTEM IDENTIFIED ON THE LOCATION MAP

Development Name: Proposed Warehouse Complex – Buildings A & B

Township, County: <u>Township of Franklin, Somerset County, New Jersey</u>

Location Description: See Location Map

TABLE OF CONTENTS

PERVIOUS PAVEMENT SYSTEM OVERVIEW	30
BASIC DESIGN INFORMATION	31
REFERENCE DOCUMENTS	32
INSPECTION CHECKLIST / MAINTENANCE ACTIONS	33
PREVENTATIVE MAINTENANCE RECORD	36
CORRECTIVE MAINTENANCE RECORD	37

PERVIOUS PAVEMENT SYSTEM OVERVIEW

Functionality

Pervious paving systems are paved areas that produce less stormwater runoff than areas paved with conventional paving. This reduction is achieved primarily through the infiltration of a greater portion of the rain falling on the area than would occur with conventional paving. This increased infiltration occurs either through the paving material itself or through void spaces between individual paving blocks known as pavers.

Pervious paving systems are divided into two general types. Each type depends primarily upon the nature of the pervious paving surface course and the presence or absence of a runoff storage bed beneath the surface course. Porous paving and permeable paver with storage bed systems treat the stormwater quality design storm runoff through storage and infiltration. Therefore, these systems have adopted TSS removal rates similar to infiltration structures. The adopted TSS removal rate for each type of pervious paving system is from 80%.

Pervious paving systems are used to reduce runoff rates and volumes from paved, on-grade surfaces such as patios, walkways, driveways, fire lanes, and parking spaces. Pervious paving systems with runoff storage beds achieve these reductions through storage of runoff and eventual infiltration into the subgrade soils. Through this infiltration process, these types of pervious paving systems also achieve stormwater quality requirements.

Proper care and attention in the long-term maintenance of the stormwater management measure is critically important to the safety and health of the public.

Type of BMP – Dry Stormwater Management Measure

The pervious pavement system shall fully drain within 72 hours of the most recent rainfall. Standing water in excess of 72 hours is a sign of the porous pavement failure. It may also contribute to mosquito breeding and other health and safety issues. At no time shall there be ponding on the surface of the pavement.

BASIC DESIGN INFORMATION

Hydrology Design Targets

- 1. The system consists of porous pavement with a choke and a crushed stone storage bed.
- 2. This system is designed with an underdrain system.
- 3. The design drain time is <u>less than 72</u> hours.
- The elevation of the seasonal high-water table of this pavement area was observed during geotechnical investigation and it was <u>1 or more</u> feet below the storage bed bottom surface, at EL. <u>99.8 to 109.8</u> feet.
- 5. The TSS removal rate is 80 %.

Hydraulic Design Targets

 This system is designed to infiltrate the runoff from the Water Quality Design Storm and groundwater recharge storm, which generates <u>35,205</u> cubic feet of runoff (sum of all areas). The peak flow entering the system ranges from <u>0.307 to 7.883</u> cubic feet per second.

2. The invert elevation of the overflow outlet is at EL. <u>Varies</u> feet.

System Configuration Targets

- 1. The system has no pretreatment.
- 2. The depth of uniformly graded coarse aggregate in the storage bed is 24 inches below choke.

Critical Maintenance Features

- 1. Avoid sand or silt onto the porous pavement area.
- 2. Sweep and vacuum the porous pavement area often to prevent clog.
- 3. Do not apply sealant to cracks or entire surface.

Wetland Disturbance Notice:

Maintenance of this BMP may disturb a wetland area. Contact NJDEP Division of Land Use Regulation for guidance and any required permit(s) before performing maintenance.

REFERENCE DOCUMENTS

- As-built Drawings with Drainage Plans and Landscape Drawings
- Geotechnical Report which includes:
 - 1. Soil Boring Logs
 - 2. Permeability Tests
- Stormwater Management Report

Refer to the Appendices for copies of reference documents.

INSPECTION CHECKLIST / MAINTENANCE ACTIONS PERVIOUS PAVEMENT SYSTEM

Checklist (circle one): Quarterly / Annual / Monthly / Special Event Inspection

Checklist No.	

Date of most recent rain event: _____

Rain Condition (circle one):

Drizzle / Shower / Downpour / Other _____

Ground Condition (circle one):

Dry / Moist / Ponding / Submerged / Snow accumulation

The inspection items and preventative/corrective maintenance actions listed below represent general requirements. The design engineer and/or responsible party shall adjust the items and actions to better meet the conditions of the site, the specific design targets, and the requirements of regulatory authorities.

	For Inspector			For Maintenance Crew
Component No. Component Name	Inspection Item and Inspection Item No.		Result	Preventative / Corrective Maintenance Actions
A Pavement Surface (Porous Pavement)	1	Standing water is present after the design drain time The observed drain time is approximately hours. Excessive sediment or mud accumulation on top of the pavement	Y N	Recheck to determine if there is standing water after 72 hours. If standing water is present longer than 5 days, report to mosquito commission. If excessive sediment is present, the system may be clogged - Sweep the surface - Power wash (at 45 degree angle to the top) - Vacuum the surface - Excavate to inspect the storage bed for clogging, replace the storage bed material if it is severely clogged - Check the permeability rate of the subsoil Work Order #
A Pavement Surface (Porous Pavement)	2	Cracking, subsidence, spalling, or other damage to the pavement	Y N	Repair according to the manufacturer's procedures and material. See Reference Documents section. Work Order #
	3	Weeds or other vegetation on the porous pavement	Y N	Remove the vegetation
Note:				
B Outlet	1	Clogged overflow outlet	Y N	Clear and remove sediment
Note:				

 Follow Up Items (Component No. / Inspection Item No.):

 (e.g., A/3, B/1)

 Associated Work Orders: # _____, # _____, # _____, # _____, # _____, # ______

 Inspector Name
 Signature

Report issues to the local authority and mosquito commission as required by local ordinances and regulatory authorities.

File this checklist in the Maintenance Log after performing maintenance.

April 2022

Stormwater Management Facilities Maintenance Manual

PREVENTATIVE MAINTENANCE RECORD

Corresponding Checklist No. _____ Component No. _____, Inspection Item No. _____

Work Logs

Activities	Components	Date Completed
Sediment/debris removal	A – Pavement Surface (Porous Pavement)	
	B – Outlet	

Debris, sediment, and trash are handled (onsite / by _____ (contractor name) to disposal site _____). (See Part I: Maintenance Plan – Disposal Plan Section)

Crew member:	/	Date:
	(name/ signature)	
Supervisor:		Date:
	(name/signature)	

(name/ signature)

File this Preventative Maintenance Record in the Maintenance Log after performing maintenance.
CORRECTIVE MAINTENANCE RECORD

1. Work Order #_____ Date Issued _____

2. Issue to be resolved:

(e.g., clogged surface)

The issue was from Corresponding Checklist No. _______,
 Component No. (e.g., B – Pavement Surface) _______,
 Inspection Item No. (e.g., 2, 3) ______.

4. Required Actions

Actions	Planned Date	Date Completed

5. **Responsible person(s):**

6. Special requirements

- Time of the season or weather condition:
- o Tools/equipment:
- Subcontractor (name or specific type):

Approved by Date

(name/signature)

Verification of completion by _____ Date _____

(name/signature)

File this Corrective Maintenance Record in the Maintenance Log after performing maintenance.

STANDARD CONSTRUCTED WETLAND MANUAL SYSTEM IDENTIFIED ON THE LOCATION MAP

Development Name: Proposed Warehouse Complex – Buildings A & B

Township, County: <u>Township of Franklin, Somerset County, New Jersey</u>

Location Description: See Location Map

TABLE OF CONTENTS

STANDARD CONSTRUCTED WETLAND OVERVIEW	.40
BASIC DESIGN INFORMATION	.41
VISUAL AID FOR WET TYPE STORMWATER BASIN INSPECTION	.43
REFERENCE DOCUMENTS	. 49
INSPECTION CHECKLIST / MAINTENANCE ACTIONS	.50
PREVENTATIVE MAINTENANCE RECORD	. 58
CORRECTIVE MAINTENANCE RECORD	. 60

STANDARD CONSTRUCTED WETLAND OVERVIEW

Functionality

Standard constructed wetlands are stormwater management systems design to maximize the removal of pollutants from stormwater runoff. Flow is directed through an engineered, open marsh system where pollutants are removed through settling and vegetative uptake/filtration.

Proper care and attention in the long-term maintenance of the stormwater management measure is critically important to the safety and health of the public.

Type of BMP – Wetland Basin

A constructed wetland is a type of **wet** basin, in which water is retained in a permanent pool. This standard constructed wetland is designed for **extended detention of runoff**. It is **not** design to infiltrate the runoff.

Standard constructed wetlands shall have a water surface elevation approximately at the design water surface elevation year round. Standard constructed wetlands consist of a combination of two or more of the following components: pool zone, marsh zone and semi-wet zone. The different zones of the constructed wetland require different water depths, shapes, and vegetation; therefore, it is normal to see varying water depths throughout the system.

BASIC DESIGN INFORMATION

Hydrology Design Targets

1. This standard constructed wetland is designed as a wetland basin, consisting of the following zones and water depths:

Extended Detention Constructed Wetland Design Specifications				
Drainage Area	<u>13.44</u> Acres			
Standing Water Depth: High Marsh Zone	<u>6</u> Inches			
Standing Water Depth: Low Marsh Zone	<u>6 – 18</u> Inches			
Standing Water Depth: Pool Zone	<u>4.37</u> Feet			
	Dry under normal conditions, inundated			
Standing Water Depth: Semi-Wet Zone	during 2, 10, 100 years events,			
	Detention time: <u>48</u> hours			

2. This basin will be discharged to existing wetland.

Hydraulic Design Targets

o Design parameters

	Water Quality Design Storm	2-year storm	10-year storm	100-year storm	
Rainfall Depth	N/A	<u>3.34</u> inches	<u>5.01</u> inches	<u>8.21</u> inches	
(inches)	IN/A	IN/A in 24 hours In 24		In 24 hours	
Runoff Volume	N/A	65,135	138,676	287,404	
(cubic feet)		,			
Peak Outflow Rate	N/A	2 050	8 149	12.03	
(cfs)	1.0/2.4	2.050	0.149	12.05	
Water Surface					
Elevation	N/A	104.18	104.93	106.82	
(feet)					

• The emergency spillway is at EL. <u>107.7</u> feet (if applicable)

Basin Configuration Targets

- 1. Pretreatment is not required.
- 2. Outlet Information:

Outlet Description	Outlet Type	Orifice Size / Weir Length	Invert Elevation (ft)
Water Quality Orifice	Orifice	3-inch Dia.	102.00
Weir	Weir	1.3 feet x 2 feet	106.00

- 3. The basin is not lined.
- 4. The wet pond does not intercept groundwater.
- 5. A Landscaping Plan that specifies the vegetation required in each zone of the constructed wetland is included in the plans.
- 6. The pond is designed without a bottom drain pipe to empty the pond.

Critical Maintenance Features

- 1. Floatables need to be cleaned and removed from the wetland.
- 2. Remove dead vegetation to prevent mosquito problem.
- 3. Water depth in each different zone must be maintained at design level.
- 4. Sediment level in the Pool Zone needs to be checked and cleaned frequently to ensure sufficient storage space and detention time.
- 5. Maintain vegetation.

Attach the following Disturbance Notices, if applicable to the site:

Wetland Disturbance Notice:

Maintenance of this BMP may disturb a wetland area. Contact NJDEP Division of Land Use Regulation for guidance and any required permit(s) before performing maintenance.

Wildlife Disturbance Notice:

Maintenance of this BMP may disturb or remove vegetation in an area designated to endangered and/or threatened species. Contact NJDEP Division of Fishing and Wildlife for guidance and any required permit(s) before performing maintenance.

April 2022Stormwater Management Facilities Maintenance ManualPage 42/64

VISUAL AID FOR WET TYPE STORMWATER BASIN INSPECTION

Issues:	The forebay has not drained. Note the sediment accumulation in the
	forebay.
Corrective Action:	Clear and remove sediment. Check if the drain hole is clogged.
Preventative	Routine inspection and maintenance to remove sediment. If sediment
Action:	accumulates too fast, find the source of sediment and method to reduce
	the sediment.

Corrective Action: Remove algae.

PreventativeRoutine inspection and aeration of the pond. Remove algae beforeAction:blooming. A finding of the nutrient source and method to reduce the
nutrient loading may be needed.

Issues: The outlet grating is covered by trash. Excessive trash in the pond.

Corrective Action: Clear and remove trash.

PreventativeRoutine inspection and removal of trash. A finding of the trash sourceAction:and method to reduce the trash may be needed.

Issues:	The water level in the wet pond is significantly below the design water surface elevation.
Corrective Action:	Check if the outlet structure or the liner is damaged. Repair any damage.
Preventative Action:	Routine inspection of the basin and the liner.

Issues: Erosion on the embankment.

Corrective Action: Repair the embankment. Report to local authority and DEP Dam Safety as required by the local and DEP rules.

PreventativeConstruct a riprap apron on the slope. Routine inspection before erosionAction:becomes severe.

If the original design information is not available, the pond configuration may signal whether it was designed as a wet basin or dry basin. As shown here, the water level is at the invert elevation of the outlet (orifice behind the trash rack). If the water level is at the first outlet from the basin bottom (this can be determined by checking the inside the outlet box), then it is a wet basin and is at correct water surface level. However, if there is another outlet below the water, then it may signal that it is a failed dry basin now filled with water.

Also the pond has a circle of riprap (also known as an energy dissipater) around the edge at the water level. A dry basin will generally not have this configuration; therefore, it suggests a wet pond.

REFERENCE DOCUMENTS

- As-built Drawings with Drainage Plans and Landscape Drawings
- Geotechnical Report which includes:
 - 3. Soil Boring Logs
 - 4. Permeability Tests
- Stormwater Management Report

Refer to the Appendices for copies of reference documents.

INSPECTION CHECKLIST / MAINTENANCE ACTIONS Standard Constructed Wetland

Checklist (circle one): Quarterly / Annual / Monthly / Special Event Inspection

Checklist No.	

Date of most recent rain event: _____

Rain Condition (circle one):

Drizzle / Shower / Downpour / Other _____

Ground Condition (circle one):

Dry / Moist / Ponding / Submerged / Snow accumulation

The inspection items and preventative/corrective maintenance actions listed below represent general requirements. The design engineer and/or responsible party shall adjust the items and actions to better meet the conditions of the site, the specific design targets, and the requirements of regulatory authorities.

	For Inspector			For Maintenance Crew
Component No.	Inspection Item and Inspection Item No.		Result	Preventative / Corrective
Component Name		hispection item and inspection item ite.		Maintenance Actions
	1	The water depth in the marsh zone is significantly above or below the design water depth Dry spot(s) appearing in the marsh zone Growth of trees or bushes in the marsh	Y N	Check for: * Damages to the liner (if applicable) * Changes in inflow patterns (less runoff, lower groundwater table) Repair any structural damages Remove sediment, reconfigure the marsh zone, remove trees, or repair
A 1		zone		the liner (if necessary) Work Order # Check whether the water level is higher than the design level
A1 Marsh Zone	2	Vegetation loss in the high marsh zone	Y N	Check the Landscaping Plan for remedial actions Work Order #
	3	Significant changes of the sinuous path pattern from the original design Channelization in the wetland	Y N	Check whether the incoming flow is larger than the design inflow Check if excessive sediment has accumulated in the marsh zone Remove sediment and reconfigure the flow path, if necessary Work Order #

	For Inspector		For Maintenance Crew	
Component No. Component Name	Inspection Item and Inspection Item No.		Result	Preventative / Corrective Maintenance Actions
Note:				Check for: - Changes in inflow patterns (less runoff, lower groundwater table) - Damages to the outlet
A2	1	The water depth in the marsh zone is significantly above or below the design water depth	Y N	 Damages to the outer Damages to the liner (if applicable) Repair any structural damages Work Order #
Pond Zone	2	Islands or shallow marsh emerging out of the pond zone	Y N	Check whether there is excessive sediment in the pond Check whether the incoming flow has excessive sediment Remove excessive sediment Find the source of excessive sediment and method to reduce the source Work Order #

		For Inspector		For Maintenance Crew
Component No. Component Name	In	spection Item and Inspection Item No.	Result	Preventative / Corrective Maintenance Actions
Note: If emptying th	e por	nd is required before sediment removal, it s	hall be not	ed that a permit may be required before
discharging the pone	d wat	er. Contact NJDEP Division of Land Use	Regulation	before discharge.
	3	The observed detention time is longer than the design detention time. The observed detention time is approximately hours.	Y N	Check whether the outlets are clogged, see section E-Outlet of this checklist
A2 Pond Zone	4	Debris or trash floating on the water	Y N	Remove debris and trash If trash and debris are excessive, find the source and the method to reduce the source.
	5	Excessive dead vegetation in the pond	Y N	Clear and remove vegetation
	6	Mosquitoes breeding	Y N	Remove dead vegetation Consult local mosquito commission for guidance Work Order #
	7	Subsidence of safety ledge	Y N	Drain the pond and repair the safety ledge Work Order #

		For Inspector		For Maintenance Crew
Component No. Component Name	In	spection Item and Inspection Item No.	Result	Preventative / Corrective Maintenance Actions
Note: If emptying th	e pon	nd is required, a permit may be required be	fore discha	riging the pond water. Contact NJDEP
Division of Land Us	e Reş	gulation before discharge.		
	1	Erosion on the side slopes	Y N	See D – Pond Embankment and Side Slopes
A3 Semi-Wet Zone	2	Overgrown trees and bushes	Y N	Clear, trim, or prune the trees according to the original Landscaping Plan Inspect to determine if the tree roots caused any structural damage Work Order #
	1	Invasive plants are present	Y N	Remove the invasive plants and restore the vegetation in accordance with the landscaping plan Work Order #
B Vegetation	2	Algae blooming	Y N	Remove algae Find the nutrient source and the solution to reduce the nutrient loading Work Order #

	For Inspector		For Maintenance Crew	
Component No. Component Name	In	Inspection Item and Inspection Item No.		Preventative / Corrective Maintenance Actions
Note:				Check for excessive overland runoff
				flow through the embankment. Check for any sink hole development
C Pond Embankment and Side Slopes	1	Signs of erosion, soil slide or bulges, seeps and wet spots, loss of vegetation, or erosion on the basin slope	Y N	Direct the overland runoff to the forebay or pretreatment area
				Restabilize the bank Work Order #
	1	Trash or debris accumulation more than 20%	Y N	Clean and remove Determine source of trash and address to reduce future maintenance costs or basin failure
D Outlet	2	Trash rack is damaged or rusted greater than 50% Trash rack is bent, loose, or missing parts	Y N	Repair or replace trash rack Work Order #
	3	Outlet components (e.g., orifice plates or weir plate) skewed, misaligned, or missing	Y N	Repair or replace component Work Order #

For Inspector		For Maintenance Crew		
Component No. Component Name	In	spection Item and Inspection Item No.	Result	Preventative / Corrective Maintenance Actions
	4	Discharge pipe apron is eroded or scoured	Y	Restabilize the discharge riprap apron
	5	Standing water is present in the outlet structure longer than 72 hours	N Y N	Work Order # Pump out the standing water Work Order #
Note:				
	1	Trees or excessive vegetation present	Y N	Remove trees and roots, and restore berms if necessary Work Order #
	2	Damaged structure	Y N	Repair Work Order #
E Emergency Spillway	3	Sign/plate: tiled, missing, or faded	Y N	Repair or replace Work Order #
	4	Excessive or overgrown vegetation blocking access to the basin	Y N	Clear, trim, or prune the vegetation to allow access for inspection and maintenance Work Order #

	For Inspector		For Maintenance Crew
Component No.	Inspection Item and Inspection Item No	Dogult	Preventative / Corrective
Component Name	Inspection item and inspection item No.	Kesuit	Maintenance Actions
Note:		· · ·	

Follow Up Items (Component No. / Inspection Item No.):

1	D/1	$\alpha(\alpha)$
(e.g.,	, Β/ I,	C/2)

Associated Work Orders: # _____, # _____, # _____, # _____, # _____,

Inspector Name

Signature

Date

Report issues to the local authority and mosquito commission as required by local ordinances and regulatory authorities.

File this checklist in the Maintenance Log after performing maintenance

PREVENTATIVE MAINTENANCE RECORD

Corresponding Checklist No.

Component No.____, Inspection Item No.____

Work Logs

Activities	Components	Check if
		finished
Sediment/debris removal Sediment removal should take place when the pond zone is thoroughly dry.	A2 – Pond Zone C – Pond Embankment and Side Slopes D – Outlet	
	A1 – Marsh Zone A2 – Pond Zone	
	A3 – Semi-Wet Zone	
Vegetation removal	C – Pond Embankment and Side Slopes	
	D – Outlet	
	E – Emergency Spillway	

Vegetation is removed by _____ (type of equipment) with minimum disruption to the remaining vegetation.

All use of fertilizers, pesticides, mechanical treatments, and other means to ensure optimum vegetation health must not compromise the intended purpose of the stormwater management measure. The fertilizer applied is ______ (type), and ______ (quantity per usage) is applied _______ (frequency of use).

Debris, sediment, and trash are handled (onsite / by _____ (contractor name) to disposal site _____). (See Part I: Maintenance Plan – Disposal Plan Section)

Crew member:	/	Date:	
	(name/ signature)		

Stormwater Management Facilities Maintenance Manual

Supervisor:_____ /____ Date: _____

A permit may be required to discharge when emptying the pond. Contact NJDEP Division of Land Use Regulation before discharging.

File this Preventative Maintenance Record in the Maintenance Log after performing maintenance.

CORRECTIVE MAINTENANCE RECORD

1. Work Order #_____ Date Issued _____

2. Issue to be resolved:

(e.g., orifice plate is loose and bent)

- 3. The issue was from Corresponding Checklist No. _____,
- 4. Component No. (e.g., E Outlet)
- 5. Inspection Item No. (e.g., 2, 3)

6. Required Actions

Actions	Planned Date	Date Completed

7. **Responsible person(s):**

8. Special requirements

- Time of the season or weather condition:
- o Tools/equipment:_____

Approved by _____ Date _____

(name/signature)

Verification of completion by _____ Date _____

(name/signature)

File this Corrective Maintenance Record in the Maintenance Log after performing

maintenance.

APPENDIX A – LOCATION PLAN

APPENDIX B – AS-BUILT DRAWINGS (TO BE ATTACHED)

APPENDIX C – GEOTECHNICAL REPORT

CARLIN • SIMPSON & ASSOCIATES, LLC

Consulting Geotechnical and Environmental Engineers

61 Main Street, Sayreville, New Jersey 08872 Tel. (732) 432-5757 Fax. (732) 432-5717

Principal: Robert B. Simpson, P.E.

Associates: Meredith R. Anke, P.E. Stephen Rossi, P.E. Kurt W. Anke Eric J. Shaw Michal Wroblewski, E.I.T. Catherine Simpson, E.I.T.

25 April 2022

PS&S 67A Mountain Blvd, Ext Warren, NJ 07059

Attn: Mr. Craig Hermann, P.E., P.P., C.M.E.

Re: Report on Subsurface Soil and Foundation Investigation Proposed Warehouse and Porous Pavement Block 88.02, Lot 13.02 and Lot 19 Franklin, NJ (CSA Job 20-127)

Dear Mr. Hermann,

In accordance with our revised proposal dated 8 December 2022 and your subsequent authorization, we have completed a Subsurface Soil and Foundation Investigation for the referenced site. The purpose of this study was to determine the nature and engineering properties of the subsurface soil and the groundwater conditions for the new construction, to recommend a practical foundation scheme, to determine the allowable bearing capacity of the site soils, and to determine the permeability in the proposed porous pavement areas.

We understand the proposed development will consist of 3 new warehouse buildings. Site development will also include new driveway and parking areas, utilities, and a stormwater management system. To guide us in our study, you have provided us with concept plans that indicate the location of the proposed construction.

Our scope of work for this project included the following:

- 1. Reviewed the proposed layout, the existing site conditions, the expected soil conditions, and planned this study.
- 2. Retained Environmental Technical Drilling Inc to advance twenty (20) test borings at selected locations on the subject site.
- 3. Retained Villane Construction to advance forty-nine (49) test pits at selected locations on the subject site.

- 4. Laid out the boring and test pit locations in the field, visually identified the soil layers encountered, obtained soil samples, and prepared detailed boring logs and a Boring and Test Pit Location Plan.
- 5. Performed soil identification tests on selected soil samples in our laboratory.
- 6. Analyzed the field and laboratory test data and prepared this report containing the results of this study.

1.0 <u>SITE DESCRIPTION</u>

The project site is located north of the intersection of Bennetts Lane and Route 27 in Franklin, New Jersey. The site is currently a tilled farm field with some partially wooded areas with underbrush. There is an abandoned house located at the southern end of the site. Existing site grades vary from approximately elevation +102.0 to +124.0 and slope downward from southeast to northwest.

2.0 PROPOSED CONSTRUCTION

We understand the proposed development will consist of 3 new warehouse buildings. Site development will also include new driveways and parking areas, utilities, and a stormwater management system. The three warehouse buildings (labeled A, B and C) will have a finished floor elevation of approximately +118.0 and a loading dock elevation of +114.0. The proposed grades in the adjacent parking lots vary from about elevation +111.0 to +117.0. Based on the proposed finished floor elevations, we anticipate that cuts up to approximately 4 feet and fills up to approximately 12 feet will be required from existing grade. The building loads were unknown at the time of this report.

Once the construction plan has been further developed, a copy of the plans should be forwarded to our office so that we can review them along with the recommendations in this report. At that time, any changes or additional recommendations can be provided, if required.

3.0 <u>SUBSURFACE CONDITIONS</u>

To determine the subsurface soil and groundwater conditions at the site, twenty (20) test borings were advanced by Environmental Technical Drilling Inc. and forty nine (49) test pits were advanced by Villane Construction Inc. at the locations shown on the enclosed Boring and Test Pit Location Plan. Detailed boring logs have been prepared and are included in this report. Our field engineer visually identified all of the soil samples obtained during the boring operations. Several samples were selected and tested in our laboratory.

3.1 <u>Soils</u>

The soil descriptions shown on the boring and test pit logs are based on the Burmister Classification System. In this system, the soil is divided into three components: Sand (S), Silt (\$) and Gravel (G). The major component is indicated in all capital letters, the lesser in lower case letters. The following modifiers indicate the quantity of each lesser component:

<u>Modifier</u>	<u>Quantity</u>
trace (t)	0 -10%
little (l)	10% - 20%
some (s)	20% - 35%
and (a)	35% - 50%

When the site soils are plastic, the following indicators are used:

<u>Plasticity</u>	Plasticity Index	Indicator
None	0 - 1	SILT
Slight	1 - 5	Clayey SILT
Low	5 - 10	SILT & CLAY
Medium	10 - 20	CLAY & SILT
High	20 - 40	Silty CLAY
Very High	40+	CLAY

The subsurface soil conditions observed in the borings and test pits can be summarized as follows:

<u>Stratum 1</u> Topsoil	At the surface at each boring and test pit location is topsoil or topsoil with tilled subsoil that ranges from 0'8" to 2'3" in thickness.
<u>Stratum 2</u> Existing Fill	Below the surface layer in 6 test pit locations is existing fill that generally consists of red brown coarse to fine Sand, and (-) Silt, some medium to fine Gravel. At test pit location TP-7, existing fill consisted of dark red brown, black coarse to fine SAND, some Silt, some medium to fine Gravel with a lot of debris including glass and brick. This stratum extends to depths ranging from 1'0" to 4'0" below the existing ground surface. There is also a stockpile of existing fill located in the northern portion of the site that is up to approximately 35 feet in height.
Stratum 3 Clayey Silt or Silt	Underlying the existing fill, sand or silty sand throughout the site is medium stiff to stiff red brown Clayey SILT or SILT little (to and), coarse to fine Sand, trace (to little) medium to fine Gravel. Portions of this stratum contain weathered rock fragments.
<u>Stratum 4</u> Sand or Silty Sand	Below strata the above strata is sand or silty sand that generally consists of red brown, brown coarse to fine SAND, trace (to some) Silt, little (to some) medium to fine Gravel or red brown coarse to fine Sand, some (to and) Silt, little (to some) medium to fine Gravel.
Stratum 5 Completely Weathered Shale	Beneath the above strata is completely weathered Shale. The completely weathered Shale is in a soil like in state, however, there could be denser pockets that cannot be conventionally excavated. The weathered Shale stratum was encountered at depths ranging from 1'0" to 12'0" below the existing ground surface at the boring and test pit locations and transitions to hard Shale bedrock with depth.
<u>Stratum 6</u> Shale Bedrock	Beneath the completely weathered Shale is Shale bedrock that is highly to slightly weathered. The highly to slightly weathered shale is generally highly fractured, contains little to no soil, and is very blocky when excavated. Highly to slightly weathered rock was encountered from 2'3" to 6'9" below the surface. Auger and

bucket refusal on probable harder bedrock as encountered in 25 of the 69 locations.

3.2 <u>Groundwater and Seasonal High Groundwater</u>

During this investigation, groundwater was encountered in 14 of the 20 test borings and 31 of the 49 test pit locations at depths ranging from 1'6" to 11'0" below the existing ground surface (approximate elevations +100.0 to +109.3). Test pit TP-1, TP-30, TP-33 and TP-49 noted perched or trapped groundwater at a depths ranging from 2'0" to 4'0" below the existing ground surface (approximate elevations +105.0 to +119.0). Evidence of seasonal high groundwater was encountered in boring B-1 and test pits TP-14, TP-20, TP-22, TP-23, TP-24, TP-36 and TP-4 at depths ranging from 0'8" to 9'6" below existing ground surface (approximate elevations +101.3 to +112.5).

Groundwater on the subject site will be controlled by the topography and the underlying bedrock surface. During construction, we expect that perched or trapped water may be encountered within the existing fill, in the silty site soils, and/or along the soil/rock interface, especially during wet periods. Proper groundwater control measures will be required in the event that water is encountered in the site excavations.

Variations in the location of the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, and other factors not immediately apparent at the time of this exploration.

3.3 <u>Bedrock</u>

Based on our experience and the boring and test pit observations, the in-situ bedrock at the site will range from completely weathered rock in a soil-like state, to shattered, very blocky and seamy, highly fractured Shale in poor condition. The rock generally transitions into harder bedrock with increasing depth. The completely weathered rock was encountered at depths ranging from 1'0" to 12'0" below existing ground surface (approximate elevations ± 101.5 to ± 117.3). Auger refusal on harder bedrock was encountered at depths ranging from 7'0" to 22'0" below the existing ground surface (approximate elevations ± 95.0 to ± 106.5). Bucket refusal on harder Shale bedrock was encountered at depths ranging from 3'9" to 7'0" (approximate elevations ± 98.8 to ± 110.8). The bedrock observations are summarized in Table 1.

Based on the provided grading plan, cuts up to 4'0" are planned throughout the site. Based on the proposed construction and boring and test pit data, these excavations may extend the completely weathered Shale bedrock particularly in the areas of proposed underground utilities.

Penetration into the bedrock and completely weathered rock with excavation equipment will depend on the degree of weathering and fracturing in the rock. The upper few feet of rock may be "rippable" by using large construction equipment, but we anticipate that the "rippability" of the bedrock will be variable and limited. It should not be assumed that the completely weathered rock (very dense material in a soil-like state) can be excavated with conventional equipment. If harder rock is encountered, the use of hydraulic hammers will be required to excavate the harder bedrock. Additional recommendations related to rock removal are discussed in Section 5.1 of this report.

3.4 Summary of Boring and Test Pit Observations

A summary of the boring observations is provided in Table 1 below.

Boring / Test Pit No.	Existing Ground Surface Elevation	Depth to Groundwater (Elevation)	Depth to Bottom of Existing Fill (Elevation)	Depth to Rock (Elevation)
B-1	+113.5	7'0" (+106.5)	NE	CWR @ 3'0" (+110.5) AR @ 11'0" (+102.5)
B-2	+114.5	8'0" (+106.5)	NE	CWR @ 9'6" (+105.0) AR @ 16'6" (+98.0)
B-3	+117.0	10'0" (+107.0) SH @ 9'6" (+107.5)	NE	CWR @ 11'0" (+106.0) AR @ 22'0" (+95.0)
B-4	+114.0	7'6" (+106.5)	NE	CWR @6'6" (+107.5) AR @ 16'6" (+97.5)
B-5	+112.5	6'0" (+106.5)	NE	CWR @ 12'0" (+100.5) AR @ 15'0" (+97.5)
B-6	+112.0	6'0" (+106.0)	NE	CWR @ 3'0" (+109.0) AR @ 14'0" (+98.0)
B-7	+114.0	7'0" (+107.0)	NE	CWR @ 2'6" (+111.5) AR @ 16'0" (+98.0)
B-8	+112.0	NWR	NE	CWR @ 4'6" (+107.5) AR @ 8'9" (+103.3)
B-9	+108.0	4'0" (+104.0)	NE	CWR @ 3'3" (+104.8) AR @ 9'6" (+98.5)
B-10	+106.5	NWR	NE	CWR @ 1'6" (+105.0) SR @ 10'9" (+95.8)
B-11	+108.0	NE	NE	CWR @ 1'6" (+106.5) AR @ 7'0" (+101.0)
B-12	+110.0	NE	NE	CWR @ 2'9" (+107.3) AR @ 7'0" (+103.0)
B-13	+109.0	4'9" (+104.3)	NE	CWR @ 2'3" (+106.8) AR @ 7'6" (+101.5)
B-14	+109.5	5'6" (+104.0)	NE	CWR @ 1'6" (+108.0) AR @ 7'0" (+102.5)
B-15	+112.0	9'0" (+103.0)	NE	CWR @ 2'0" (+110.0) AR @ 10'0" (+102.0)
B-16	+115.0	NE	NE	CWR @ 1'3" (+113.8) AR @ 9'0" (+106.0)
B-17	+119.5	11'0" (+108.5)	NE	CWR @ 5'0" (+114.5) AR @ 13'0" (+106.5) SR @ 14'9" (+104.8)
B-18	+111.0	3'9" (+107.3)	NE	CWR @ 1'6" (+109.5) SR @ 11'8" (+99.3)
B-19	+113.0	7'6" (+105.5)	NE	CWR @ 1'8" (+111.3) AR @ 8'0" (+105.0) SR @ 8'4" (+104.6)
B-20	+114.0	NE	NE	CWR @ 4'6" (+109.5) AR @ 9'0" (+105.0)

Table 1 – Summary of Boring and Test Pit Observations

Boring / Test Pit No.	Existing Ground Surface Elevation	Depth to Groundwater (Elevation)	Depth to Bottom of Existing Fill (Elevation)	Depth to Rock (Elevation)
TP-1	+113.0	*3'3" (+109.8)	NE	CWR @ 2'6" (+110.5) BR @ 4'0" (+109.0)
TP-2	+115.0	NE	NE	$\frac{DR(@, 40"(+10).0)}{CWR(@, 5'6"(+109.5))}$
TP-3	+114.5	NE	NE	CWR @ 5'6" (+109.0)
TP-4	+112.0	NE	NE	CWR @ 6'0" (+106.0)
TP-5	+111.5	NE	NE	CWR @ 5'6" (+106.0) BR @ 6'3" (+105.3)
TP-6	+109.0	NE	NE	CWR @ 1'4" (+107.7)
TP-7	+119.0	NE	4'0" (+115.0)	CWR @ 7'3" (+111.8)
TP-8	+117.0	NE	1'0" (+116.0)	CWR @ 8'0" (+109.0)
TP-9	+115.0	NE	NE	CWR @ 7'0" (+108.0)
TP-10	+113.0	7'6" (+105.5)	NE	CWR @ 6'9" (+106.3)
TP-11	+112.5	7'9" (+104.8)	NE	CWR @ 6'3" (+106.3)
TP-12	+111.5	6'3" (+105.3)	NE	CWR @ 5'3" (+106.3) BR @ 7'0" (+104.5)
TP-13	+108.0	4'3" (+103.8)	NE	CWR @ 6'0" (+102.0)
TP-14	+107.0	3'9" (+103.3) SH @ 1'6" (+105.5)	NE	CWR @ 2'3" (+104.8)
TP-15	+109.5	5'6" (+104.0)	NE	CWR @ 1'6" (+108.0)
TP-16	+111.5	6'6" (+105.0)	NE	CWR @ 6'6" (+105.0)
TP-17	+109.5	5'0" (+104.5)	NE	CWR @ 6'9" (+102.8)
TP-18	+106.5	3'0" (+103.5)	NE	CWR @ 1'0" (+105.5) BR @ 6'0" (+100.5)
TP-19	+102.5	3'0" (+99.5)	NE	CWR @ 1'0" (+101.5) BR @ 3'9" (+98.8)
TP-20	+102.5	1'6" (+101.0) SH @ 1'3" (+101.3)	NE	CWR @ 3'0" (+99.5)
TP-21	+104.5	3'6" (+101.0)	NE	CWR @ 3'9" (+100.8)
TP-22	+103.0	3'0" (+100.0) SH @ 1'0" (+102.0)	NE	CWR @ 4'9" (+98.3)
TP-23	+104.5	2'9" (+101.8) SH @ 0'10" (+103.6)	NE	CWR @ 1'3" (+103.3)
TP-24	+106.0	2'9" (+103.3) SH @ 0'8" (+105.3)	NE	CWR @ 2'0" (+104.0)
TP-25	+110.0	5'3" (+104.8)	NE	CWR @ 3'3" (+106.8)
TP-26	+111.0	3'9" (+107.3)	NE	CWR @ 1'3" (+109.8)
TP-27	+110.5	3'3" (+107.3)	NE	CWR @ 1'6" (+109.0)
TP-28	+114.0	NE	NE	CWR @ 2'0" (+112.0) BR @ 4'6" (+109.5)
TP-29	+120.5	NE	2'6" (+118.0)	CWR @ 6'0" (+114.5)
TP-30	+122.0	*3'0" (+119.0)	3'0" (+119.0)	CWR @ 3'9" (+118.3)
TP-31	+111.0	4'3" (+106.8)	NE	CWR @ 2'0" (+109.0)
TP-32	+110.0	5'0" (+105.0)	NE	CWR @ 1'8" (+108.3)
TP-33	+107.0	*2'0" (+105 0)	NE	CWR @ 1'0" (+106 0)

Boring / Test Pit No.	Existing Ground Surface Elevation	Depth to Groundwater (Elevation)	Depth to Bottom of Existing Fill (Elevation)	Depth to Rock (Elevation)
TP-34	+105.5	2'0" (+103.5)	NE	CWR @ 4'0" (+101.5)
TP-35	+116.0	NE	NE	CWR @ 5'3" (+110.8)
TP-36	+118.0	SH @ 5'6" (+112.5)	NE	NE to 7'9"
TP-37	+146.0	NE	>9'0" (>+137.0)	NE
TP-38	+135.0	NE	>9'0" (>+126.0)	NE
TP-39	+108.5	3'3" (+105.3)	NE	CWR @ 1'6" (+107.0)
TP-40	+110.0	5'6" (+104.5)	NE	CWR @ 1'4" (+108.7)
TP-41	+106.0	4'6" (+101.5) SH @ 1'0" (+105.0)	NE	CWR @ 1'6" (+104.5)
TP-42	+108.0	4'0" (+104.0)	NE	CWR @ 3'3" (+104.8)
TP-43	+109.5	5'6" (+104.0)	NE	CWR @ 1'3" (+108.3)
TP-44	+112.0	NE	NE	CWR @ 2'0" (+110.0)
TP-45	+113.5	NE	NE	CWR @ 3'3" (+110.3)
TP-46	+113.0	NE	NE	CWR @ 1'0" (+112.0)
TP-47	+119.0	NE	NE	CWR @ 1'8" (+117.3)
TP-48	+114.0	4'9" (+109.3)	NE	CWR @ 1'3" (+112.8)
TP-49	+115.0	*4'0" (+111.0)	NE	CWR @ 1'3" (+113.8) BR @ 4'3" (+110.8)

NE - Not Encountered

NWR – No Water Reading

SH – Seasonal High Groundwater (i.e. Mottling)

(*) – Perched or Trapped Groundwater

CWR – Completely to Moderately Weathered Rock, rippable

AR – Auger Refusal on Harder Bedrock

SR – Spoon Refusal on Weathered Shale

BR – Bucket Refusal on Harder Bedrock

4.0 <u>SUMMARY OF DESIGN RECOMMENDATIONS</u>

Below is a summary of the major design and construction considerations for this project. Additional recommendations are provided in the following sections of this report.

- <u>Subsurface Conditions (Section 3.0)</u>
 - Topsoil at the site extends to depths ranging from 0'8" to 2'3" below the existing ground surface.
 - Existing fill at the site extends to depths ranging from 1'0" to 4'0" below the existing ground surface at the boring and test pit locations.
 - An existing stockpile of material is located in the northeast portion of the site that is approximately 30 to 35 feet in height.
 - Groundwater was encountered depths ranging from 1'6" to 11'0" below the existing ground surface.
 - Perched or trapped groundwater was encountered at a depths ranging from 2'0" to 4'0" below the existing ground surface.
 - Evidence of seasonal high groundwater (i.e. mottling) was encountered at depths ranging from 0'8" to 9'6" below existing ground surface.

- A summary of the subsurface observations is provided in Table 1 above.
- <u>Building Area Preparation (Section 5.1)</u>
 - Where encountered, the existing fill shall be completely removed from below the building area and replaced with new compacted fill.
 - Existing fill is not suitable for the support of the building foundations and floor slab.
 - The existing stockpile of material in the northeast portion of the site will be moved to reach the planned subgrade elevation. If existing fill remains below the finished floor elevation, it must be completely removed and replaced with new compacted fill.
 - Exposed subgrade soil shall be densified prior to excavating foundations.
 - New backfill shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM D-1557).
- Building Foundation Recommendations (Section 5.2)
 - The new foundations may be designed as spread footing type foundations bearing on virgin soil or engineer-approved compacted fill.
 - Net design bearing pressure is 4,000 psf.
 - Minimum depth for frost protection is 36 inches.
 - Seismic Site Class is D or Stiff Soil Profile.
- <u>Building Floor Slab Recommendations (Section 5.3)</u>
 - The floor slab may be designed as slab on grade.
 - Modulus of subgrade reaction is 200 pci.
- Additional Site Recommendations (Section 6.0)
 - Stormwater Management (Section 6.1): Porous pavement areas are proposed across the site. One detention basin is proposed in the western portion of the site.
 - Pavement (Section 6.2): Densified existing fill, virgin soil, and new compacted fill may be used to support the pavement.
 - Utilities (Section 6.3): New utilities may bear in the densified existing fill, virgin soil, or new compacted fill.

5.0 **BUILDING EVALUATION**

We understand the proposed development will consist of 3 new warehouse buildings. The three warehouses (labeled A, B and C) will have a finished floor elevation of approximately +118.0 and a loading dock elevation of +114.0. The proposed grades in the adjacent parking lots vary from +111.0 to +117.0. Based on the proposed finished floor elevations of the warehouses and the roadway grading we anticipate cuts up to 4 feet and fills up to 12 feet will be required from existing grade. A summary of the boring and test pit observations performed in the proposed building areas is provided in Table 1 above.

Topsoil was encountered at the site to depths ranging from 0'8" to 2'3" below existing ground surface. Existing fill at the site extends to depths of 1'0" to 4'0" below the existing ground surface at the test locations. An existing stockpile of material is located in the northeast portion of the site that is approximately 30 to 35 feet in height. The depth of the existing fill is expected to be variable and may be deeper in unexplored areas of the site. The existing fill and topsoil are considered unsuitable materials and are not an acceptable bearing material for the new building
foundations or floor slab. The consistency and density of the soil fill are not predictable. Certain areas may contain clean dense soils while other areas may contain loose material, void spaces, and/or debris. The existing soil fill creates the possibility of intolerable differential settlements under loading.

To eliminate the potential for damaging differential settlements, the existing fill and topsoil shall be completely removed and replaced with new compacted fill. The building foundation may be designed as a shallow spread foundation bearing on engineered-approved compacted fill or the virgin soils. Recommendations for preparation of the building area are provided in Section 5.1. Foundation recommendations for the building are provided in Section 5.2 below. In addition, the proposed building floor slab may be designed as slab on grade bearing on new compacted fill or virgin soils. Floor slab recommendations can be found in Section 5.3 below.

5.1 <u>Building Area Preparation</u>

In order to prepare the site for construction, any surface materials such as topsoil, surface vegetation, and trees shall be removed from the planned building areas, extending at least 10 feet beyond the new construction limits, where practical.

Removal of Existing Fill

Existing fill was encountered in four boring and test pit locations. The existing fill was encountered to depths ranging from 1'0" to 4'0" below the existing ground surface. As discussed above, the existing fill is not a suitable bearing material for the new building foundations and floor slabs. Where existing fill is encountered in a building area, it must be completely removed and replaced as described below.

If existing fill remains below the planned subgrade elevation, the excavation shall extend through the existing fill down to the virgin soil. At the bottom of the excavation, the removal of the unsuitable material shall extend horizontally beyond the building limits a minimum distance of 1'0" plus a distance equal to the depth of the excavation below the planned foundation bearing elevation. For example, if the removal of the existing fill extends vertically 3'0" below the planned foundation bearing elevation, the excavation must extend horizontally a minimum of 4'0" (1'0" plus 3'0") beyond the new building limits at that location.

The removal of the existing fill from the proposed building areas shall be performed under the full time inspection of Carlin-Simpson & Associates. The on-site representative from Carlin-Simpson & Associates shall direct the contractor during this operation to ensure that all of the unsuitable material has been removed from the proposed building areas.

During the removal of the unsuitable material, the contractor should segregate the potentially re-usable existing soil/fill material from the non-reusable fill (i.e. debris and topsoil). The on-site representative from Carlin-Simpson & Associates shall evaluate the suitability of the excavated materials for use as compacted fill during the excavation and prior to its re-use. Potentially usable fill should be stockpiled and covered with tarps or plastic sheeting for protection from excess moisture. Any fill material that is or becomes wet must be dried prior to its re-use.

Densification of Subgrade Soils (Proofrolling)

After the surface materials and existing fill are removed as outlined above; the exposed subgrade shall be proofrolled with at least five (5) passes of a large vibratory drum roller (i.e. Dynapac CA 250 or equivalent). The proofrolling is necessary to densify the underlying soils. The proofrolling must be performed prior to the excavation for new foundations and the placement of new fill in the building areas. In areas where the existing subgrade is to be cut, the proofrolling of the subgrade in those areas should be performed once the proposed subgrade is achieved.

A representative from Carlin-Simpson & Associates shall observe the proofrolling operation. If any excessive movement is noted during the proofrolling, the soft soil shall be removed and replaced with new compacted fill. The Carlin-Simpson & Associates representative shall be responsible for determining what material, if any, is to be removed and will direct the Contractor during this operation.

Handling Wet and Sensitive Subgrades During Foundation Excavations

The foundation bearing material may consist of clayey or silty virgin soil. In the event that the foundation subgrade consists of wet or soft soils, and become destabilized due to the seepage of trapped or perched groundwater into the excavation, stabilization with crushed stone and filter fabric will be required to construct the foundations. It is anticipated that over-excavation below the foundations between be required in some areas where the existing grades are being cut, primarily in warehouses B and C. It is recommended that geotextile fabric, crushed stone, and sump pumps be present on the site when excavating for the foundations, to control groundwater and minimize the destabilization of the foundation subgrade.

To prepare the destabilized foundation subgrade surface for the geotextile fabric and crushed stone, all groundwater, loose soil, and mud must be removed from the area. The vertical overexcavation below the bottom of footing will range between 12 to 18 inches. The horizontal over excavation beyond the edge of the foundations shall be equal to the vertical overexcavation. Where necessary, sump pits and pumps should be used to remove the standing water and to control the groundwater during construction. The sumps shall consist of a perforated pipe at least eight (8) inches in diameter, surrounded by crushed stone and filter fabric. The sump pits must be installed just outside the planned excavation area and should extend a minimum of 2 feet below the bottom of the proposed excavation elevation.

After the subgrade is prepared, the geotextile filter fabric should be laid out on the exposed subgrade. The geotextile filter fabric shall consist of Mirafi 500X or equivalent. Adjacent layers of geotextile filter fabric should be overlapped a minimum of 12 inches. As necessary, approximately 12 to 18 inches of 3/4-inch clean crushed stone will be installed on top of the filter fabric layer to provide a firm working surface, provide protection for the geotextile filter fabric, and minimize pumping of the subgrade soil. The stone should be spread across the geotextile filter fabric.

Installation of New Structural Fill

New fill required to achieve final grades shall consist of either engineer-approved on-site soil or imported sand and gravel. Imported sand and gravel shall contain less than 20% by weight passing a No. 200 sieve. The new fill shall be placed in layers not exceeding one (1) foot in thickness and each layer shall be compacted to at least 95% of its Maximum Modified Dry Density (ASTM

D1557). Each layer must be compacted, tested, and approved by the Carlin-Simpson & Associates field representative prior to placing subsequent layers. The suitability of the excavated soil for reuse as compacted structural fill is discussed in Section 6.5 below.

If imported structural fill is required during construction, the imported structural fill shall meet the following specified gradation:

US Standard Sieve Size	Percent Finer By Weight
3 inch	100
No. 4	30-80
No. 40	10-50
No. 200	0-20

5.2 <u>New Building Foundations</u>

Once the planned building subgrade has been prepared as described Section 5.1 above, the new foundations may be constructed on the virgin site soils or new compacted fill. The new building foundations may be designed as shallow spread footings using a net design bearing pressure as listed in Table 2 below.

All foundations shall bear on the virgin soil or on new engineer-approved compacted fill. All of the exterior footings shall bear at the minimum depth listed below for protection from frost. Interior column footings may bear on the virgin soil or new structural fill just below the floor slab provided the structure is heated during winter. The footings shall have minimum dimensions as listed below.

Description	Value
Foundation Bearing Material	Virgin Soil or New Compacted Fill
Net Design Bearing Pressure	4,000 psf
Minimum Frost Depth	36 inches
Minimum Column Dimension	30 inches
Minimum Wall Dimension	18 inches

Table 2 – Building Foundation Design Parameters

The excavations for the new foundations shall be performed under the full-time inspection of Carlin-Simpson & Associates. The on-site representative shall confirm that the foundation bearing material is capable of supporting the design bearing pressure.

Prior to the installation of the reinforcement steel and concrete, the bottoms of the foundation excavations should be cleaned of all loose material. The foundation subgrade shall be compacted with a small vibratory drum trench compactor (i.e. Wacker Model RT560), a heavy vibratory plate tamper (i.e. Wacker BPU 3545A or equivalent), or a "jumping jack" style tamper (i.e. Wacker Model BS 600). The preparation of the footing bearing subgrade should be performed under the observation of a representative from Carlin-Simpson & Associates. If instability is observed during the compacted of the bearing subgrade, the soft soil shall be removed and replaced with new compacted fill.

5.3 **Building Floor Slabs on Grade**

We anticipate that fills up to 12 feet will be required in the proposed building areas to achieve the desired finished floor elevations. New fill for the floor slabs shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel shall contain less than 20% material by weight passing a No. 200 sieve. The new fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D1557). Fill layers shall be compacted, tested, and approved before placing subsequent layers.

The floor slabs may be designed as slabs on grade bearing on densified virgin soil or on new engineer-approved structural fill. Floor slab design parameters are provided in Table 3 below. A layer of 3/4-inch crushed stone is recommended beneath the concrete slab, for additional support and drainage.

The floor slab design parameters are based on the anticipated loading of the floor slab. It is assumed that only light loads, no heavy machinery or equipment will be placed on the floor slab. At the time of writing this report, the loads that will be placed on the floor slab were unknown. If the actual loading is different from what is assumed in this report, the information must be forwarded to our office for review and make additional recommendations, if necessary.

<u>Table 3 – Warehouse</u>	Floor	Slab	Design	Parameters
			-	

Description	Value
Slab Subgrade Material	New Compacted Fill or Virgin Soil
Modulus of Subgrade Reaction (k)	200 pci
Crushed Stone Cushion Thickness	6 inches

5.4 **Building Settlement**

Settlement of individual footings, designed in accordance with recommendations presented in this report, is expected to be within tolerable limits for the proposed structure. For footings placed on natural soils or new compacted fill approved by Carlin-Simpson & Associates and constructed in accordance with the requirements outlined in this report, maximum total settlement is expected to be on the order of 1-inch or less. Maximum differential settlement between adjacent columns or load bearing walls is expected to be ¹/₂-inch or less.

The above settlement values are based on our engineering experience with similar soil conditions and the anticipated structural loading. These estimated settlements are intended to guide the structural engineer with their design. It is critical that Carlin-Simpson & Associates be retained to observe the foundation bearing surfaces and to confirm the recommended bearing pressures during construction.

5.5 <u>Seismic Design Considerations</u>

From the site-specific test boring data, the Seismic Site Class was determined using the International Building Code – New Jersey Edition and Table 20.3-1 of ASCE 7-16. The site-specific data used to determine the Site Class typically includes soil test borings to determine Standard

Penetration resistances (N-values). Based on estimated average N-values in the upper 100 feet of soil profile, the site can be classified as Site Class D or Stiff Soil Profile.

The new structure should be designed to resist stress produced by lateral forces computed in accordance with Section 1613 of International Building Code - New Jersey Edition (2018). The values in Table 4 can be used for this project.

Description	Value
Mapped Spectral Response Acceleration for Short Periods, [Fig 1613.2 (1)]	Ss=0.253g
Mapped Spectral Response Acceleration at 1-Second Period, [Fig 1613.2 (2)]	S ₁ =0.055g
Site Coefficient [Table 1613.2.3 (1)]	$F_a = 1.597$
Site Coefficient [Table 1613.2.3 (2)]	$F_v = 2.40$
Max Considered Earthquake Spectral Response for Short Periods [Eq 16-36]	S _{MS} =0.404g
Max Considered Earthquake Spectral Response at 1-Second Period [Eq 16-37]	S _{M1} =0.133g
Design Spectral Response Acceleration for Short Periods [Eq 16-38]	S _{DS} =0.27g
Design Spectral Response Acceleration for 1-Second Period [Eq 16-39]	S _{D1} =0.089g

Table 4 – Seismic Design Values

We expect that the proposed building will be a standard occupancy with a Risk Category of II. Based on this assumption, the Seismic Design Category (SDC) B. The Risk Category and SDC should be verified by the project structural engineer. In the event that the structure has a different Risk Category, the SDC should be updated in accordance with Section 1613 of the International Building Code – New Jersey Edition.

6.0 <u>SITE EVALUATION</u>

Our recommendations for the proposed site development including the new utilities, pavement, temporary excavation and bracing, and suitability of the existing site soils for reuse are provided below. A summary of the boring and test pit observations is provided in Table 1 above.

6.1 <u>Stormwater Management System</u>

It is our understanding that new stormwater management systems will be constructed at the site. The stormwater management system will consist of porous pavement areas and a detention basin. The porous pavement invert elevations will vary with the proposed pavement grades, and the detention basin will have a proposed bottom elevation of +102.0.

Based on our field observations, a large portion of the site that is currently classified as HSG "C" and may be reclassified. The site contains soil and rock that have low enough permeability, shallow depth to weathered rock and seasonal high groundwater to reclassify portions of the site to HSG "D".

According to Chapter 12: Soil Testing Criteria of the NJ Stormwater Best Management Practices Manual (March 2021), when the HSG designation of a soil mapping unit is undetermined or inaccurate, field observations and soil testing must be performed and classification of HSG must be in accordance with the NRCS National Engineering Handbook, part 630 – Hydrology (NEH), Chapter 7 Hydrologic Soil Groups, January 2009.

To determine the number of test locations required to reclassify a soil mapping unit are found in Chapter 12 of the NJ Stormwater Best Management Practices Manual and is dependent on the acreage of the soil mapping unit. The summary of existing HSG classification, acreage, and quantity of the required tests to reclassify is summarized in the Table 5 below.

Soil Mapping Unit	Existing Hydrologic Soil Group (HSG)	Area of Soil Mapping Unit (acres)	Number of Test Locations Required to Reclassify
BhnB	В	2.13	8
RehA (upper)	С	7.0	14
RehA (lower)	С	2.19	8
RoyB (upper)	С	3.19	8
RoyB (lower)	С	3.53	8

Table 5: Summary of Existing HSG, Acreage, Required Number of Test Locations

The following is a summary of the regulations that were used to reclassify the site.

- If Seasonal High Water Table (i.e. mottling or groundwater observations within January to April inclusive) is within 24 inches of the ground surface, the soil must be classified as HSG "D".
- 2) Depth to water impermeable layer is less than 50 cm or 20 inches, the soil must be classified as HSG "D". A water impermeable layer is defined by having a K_{sat} less than 0.0014 in/h or a component of cemented horizons, bedrock (parathilic or lithic), etc.
- 3) Lastly, if the K_{sat} is determined to be lower than that indicated on Table 7-1 of the NRCS National Engineering Handbook part 630 Hydrology (NEH), Chapter 7 Hydrologic Soil Groups, January 2009, the soil may be classified as HSG "D".

The boring, test pit and percolation data shows that the entire RoyB (upper) and RoyA (upper) and portions of RoyB (lower) and RehA (lower) can be reclassified as Hydrologic Soil Group "D". The attached Figure 2 indicates the locations of the boring, test pit and percolation tests with the reclassified Hydrologic Soil Group for the soil mapping units.

The following tables are a summary of boring and test pits with the corresponding regulation that was used to reclassify the soil mapping unit.

Test Pit or Boring Location	Existing Hydrologic Soil Group (HSG)	Regulation used to Reclassify	New Hydrologic Soil Group
B-10	С	2	D
B-11	С	2	D
B-12	С	2	D
B-13	С	2	D
B-14	С	2	D
B-16	С	2	D
B-18	С	2	D
B-19	С	2	D
TP-2	С	3	D

Table 6: Test Locations and Regulation used to Reclassify Portions of Site to HSG "D"

Test Pit or	Existing Hydrologic	Regulation used to	New Hydrologic Soil
Boring Location	Soil Group (HSG)	Reclassify	Group
TP-3	С	3	D
TP-4	С	3	D
TP-5	С	3	D
TP-6	С	3	D
TP-13	С	3	D
TP-14	С	1	D
TP-15	С	2	D
TP-18	С	2	D
TP-19	С	2	D
TP-20	С	1	D
TP-21	С	3	D
TP-22	С	1	D
TP-23	С	1, 2	D
TP-24	С	1	D
TP-25	С	3	С
TP-26	С	2	D
TP-27	С	2	D
TP-29	С	3	D
TP-30	С	2	D
TP-32	С	2	D
TP-33	С	2	D
TP-39	С	2	D
TP-40	С	2	D
TP-41	С	1, 2	D
TP-42	С	3	С
TP-43	С	2	D
TP-46	С	2	D
TP-47	С	2	D
TP-48	С	2	D
TP-49	С	2	D

(1) – Depth to Seasonal High Groundwater Table

(2) – Depth to water impermeable layer

 $(3) - K_{sat}$ is determined to be lower than that indicated on Table 7-1 of NRCS National Engineering Handbook

Table 7: Test Location and Regulation used to Classify Remainder of Site
--

Test Pit or Boring Location	Existing Hydrologic Soil Group (HSG)	Regulation used to Reclassify	New Hydrologic Soil Group
TP-8	В	3	В
TP-9	В	3	Α
TP-10	В	3	В
TP-11	В	3	В
TP-12	С	3	В

Test Pit or Boring Location	Existing Hydrologic Soil Group (HSG)	Regulation used to Reclassify	New Hydrologic Soil Group
TP-16	С	3	В
TP-17	С	3	С
TP-36	В	3	В

(1) – Depth to Seasonal High Groundwater Table

(2) – Depth to water impermeable layer

 $(3) - K_{sat}$ is determined to be lower than that indicated on Table 7-1 of NRCS National Engineering Handbook

Field percolation tests were performed at select test pit locations in accordance with NJ Stormwater Best Management Practices Manual, Chapter 12 "Soil Testing Criteria" for the proposed systems and reclassification of the Hydrologic Soil Group (HSG). The results of the percolation test results are presented below.

Test Pit No.	Approximate Ground Surface Elevation	Bottom of Test Depth (Elevation)	Percolation Rate (min/in)	Infiltration Rate (in/hr)	HSG
TP-2	+115.0	2'6"	960	0.021	D
TP-3	+114.5	2'6"	960	0.021	D
TP-4	+112.0	2'3"	720	0.027	D
TP-5	+111.5	2'3"	480	0.0416	D
TP-8	+117.0	2'0"	16.7	1.19	В
TP-9	+115.0	3'3"	6	3.3	А
TP-10	+113.0	3'6"	25.5	0.78	В
TP-11	+112.5	2'0"	143	0.84	В
TP-12	+111.5	2'6"	25.0	0.80	В
TP-13	+108.0	2'6"	350	0.057	D
TP-16	+111.5	1'9"	25.2	0.79	В
TP-17	+109.5	2'0"	46.3	0.43	С
TP-21	+104.5	2'0"	420	0.047	D
TP-25	+110.0	1'6"	142	0.141	С
TP-29	+120.5	3'6"	960	0.02	D
TP-36	+118.0	1'6"	30.5	0.66	В
TP-42	+108.0	2'0"	50.1	0.39	С

Table 8: Summary of Percolation Test Results

Should stormwater management areas be planned in other portions of the property, they should be evaluated on a case-by-case basis. The subsurface stormwater management systems must be designed in accordance with the applicable State of New Jersey Department of Environmental Protection (NJDEP) regulations and the NJ Stormwater Best Management Practices (BMP) Manual. Testing requirements are outlined in Chapter 12 of the manual.

6.2 <u>Pavement</u>

We understand that the proposed construction will also include new asphalt paved parking areas and driveways. We expect that cuts up to 4 feet and fills up to 12 feet will be required to achieve the planned subgrade elevations in the new pavement areas.

Test pit TP-7 is located within a proposed pavement area and indicated a high percentage of debris. Material that contains a high percentage of debris is not suitable for support of the pavement and must be completely removed. Densified existing fill, virgin site soils, and new compacted fill may be used to support the pavement.

In the proposed pavement areas, the existing building in the southern most parking lot must be completely demolished and the debris removed from the site. The foundations, walls, and footings may remain in place provided that they are at least thirty (30) inches below final grade and do not interfere with the new utilities. The existing foundations, walls, and footings must also be thirty (30) inches below any utility invert. The existing basement slab may be broken up and left in place or removed. The excavation resulting from the removal of the existing structures shall be backfilled using controlled compacted fill. New fill shall consist of either suitable on-site soil or imported sand and gravel placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D-1557).

To prepare the new pavement areas, the existing surface materials (i.e. topsoil) must be removed from the planned pavement areas. In the proposed pavement areas, the existing structures and debris resulting from the demolition of these structures must be completely removed from the new pavement area, extending at least five (5) feet beyond the new paving limits, where practical. The excavations resulting from the removal of existing structures shall be backfilled using controlled compacted fill. New fill shall consist of either suitable on-site soil or imported sand and gravel placed in one (1) foot loose layers and compacted to at least 92% of its Maximum Modified Dry Density (ASTM D-1557).

Areas where existing fill (outside the area surrounding test pit TP-7) is encountered shall be compacted in place. Carlin-Simpson & Associates or a qualified geotechnical engineer must evaluate these areas for the presence of soft or unsuitable material within the existing fill matrix. Portions of this fill may have to be removed and replaced with new compacted fill. Carlin-Simpson & Associates or the qualified geotechnical engineer will determine this during construction.

After all surface materials have been removed, the area can be excavated to the planned subgrade elevation. Where soil is encountered at the subgrade elevation, the subgrade shall be proofrolled with a large vibratory drum roller (i.e. Dynapac 250 or equivalent) to densify the underlying soils. The on-site representative from Carlin-Simpson & Associates or the qualified geotechnical engineer shall witness the proofrolling operation. If any excessive movement is noted during the proofrolling, the soft or unsuitable soil shall be removed and replaced with new compacted fill.

Where new fill is required to achieve final grades, it shall consist of either suitable on-site soil or imported sand and gravel. Imported sand and gravel shall contain less than 20% by weight passing a No. 200 sieve. New fill shall be placed in layers not exceeding one (1) foot in loose thickness and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D-1557). After the planned subgrade has been proofrolled and new compacted fill has been

placed as required, the new pavement subbase may be placed on the existing site soils and new compacted fill.

Asphalt Pavement Section

The new pavement subbase may be placed on engineer-approved densified existing fill, virgin soil, or new compacted fill. A minimum of eight (8) inches of dense graded aggregate (DGA) is recommended for the subbase layer for drainage and additional pavement support. We recommend that the following pavement section be used for the parking lots and driveways. This pavement section is subject to local government approval.

2"	Asphalt Wearing Surface Course	(NJDOT Item I-5)
3"	Asphalt Base Course	(NJDOT Item I-2)
8"	Stone Subbase Course-Dense-Grade	ed Aggregate (DGA)
	Approved Compacted Subgrade (M	inimum CBR = 10)

6.3 <u>Utilities</u>

New utilities may bear in the densified existing fill, virgin soils, or new compacted fill. The bottom of all trenches shall be excavated clean so a hard bottom is provided for pipe support. If any soft areas or unsuitable existing fill conditions are encountered during the construction operation, these materials must be removed and replaced with new compacted fill. For areas where the existing building foundations, walls, and footings are remaining in place they must be at least thirty (30) inches below the invert of the new utilities.

Trench hammering may be required to install the new utilities in portions of the site where rock is encountered above the planned utility invert elevation. Where rock is encountered in the utility excavations, it must be removed to at least six (6) inches below planned pipe invert. The overexcavated six (6) inches shall then be filled with new sandy fill and compacted to at least 92% of its Maximum Modified Dry Density (ASTM D-1557) to act as a cushion on the rock.

In the event that the trench bottom becomes soft due to the inflow of surface or trapped water, the soft soil shall be removed and the excavation filled with a minimum of six (6) inches of 3/4-inch clean crushed stone to provide a firm base for support of the pipe. Sump pits and pumps should be adequate to keep the excavations dry.

After the utility is installed, the trench must be backfilled with compacted fill. The fill shall consist of suitable on-site soil or imported sand and gravel. Imported fill shall contain less than 20% by weight passing a No. 200 sieve. Large rock fragments and boulders must not be placed directly against the pipe. Controlled compacted fill shall be placed in one (1) foot loose layers and each layer shall be compacted to at least 92% of its Maximum Modified Dry Density (ASTM D-1557). The backfill must be free of topsoil, debris, and large boulders or rock fragments.

6.4 <u>Temporary Construction Excavations and Excavation Protection</u>

Temporary construction excavations should be conducted in accordance with the most recent OSHA guidelines or applicable federal, state or local codes. A qualified person should evaluate the excavations at the time of construction to determine the appropriate soil type and allowable slope configuration. Based on the boring and test pit data, we believe the site soils and rock would have the following classifications as defined by the OSHA guidelines.

Soil/Rock Type	Possible Classification	Maximum Slope or Bench
Existing Fill	Type "C"	1½H:1V
Virgin Soil	Type "B" or "C"	1H:1V to 1 ¹ / ₂ H:1V

Temporary support (i.e. trench boxes, sheeting and shoring, etc.) should be used for any excavation that cannot be sloped or benched in accordance with the applicable regulations, where necessary to protect adjacent utilities and structures, or where saturated soils or water seepage is encountered within the excavation.

A New Jersey State licensed professional engineer must design all temporary and permanent support systems. The contractor will select the shoring type and submit design calculations for the proposed shoring method to Carlin-Simpson & Associates for review. The soil adjacent to the temporary support system will exert a horizontal pressure against the system. This pressure is based on the soil unit weight, coefficient of active earth pressure, and depth of the excavation. Support of Excavation design parameters are listed in Table 9 below.

Table 9 – Temporary Sheeting and Shoring Design Parameters

Description	Value
Moist Unit Weight (pcf)	130
Friction Angle (\$, deg)	30
Cohesion (c, psf)	0
Active Earth Pressure Coefficient (k _a)	0.33
Equivalent Fluid Pressure (pcf)	42.9
Passive Earth Pressure Coefficient (k _p)	3.0

6.5 Suitability of the In-Situ Soils for Use as Compacted Fill

The suitability of each soil stratum for use as compacted fill is discussed below.

- Stratum 1Topsoil is not suitable for use as compacted fill. During the stripping operation, itTopsoilmay be stockpiled on site for later use in the landscaped areas or removed from the
site.
- **Stratum 2** The existing fill generally consists of red brown coarse to fine Sand, and (-) Silt, some medium to fine Gravel. At test pit location TP-7 existing fill consisted of dark red brown, black coarse to fine SAND, some Silt, some medium to fine Gravel with a lot of debris including glass and brick. The existing fill that was encountered in TP-7 is not suitable for reuse as compacted fill. The remaining existing fill is suitable for reuse as long as it remains relatively dry for optimum compaction and all debris (if encountered) has been removed prior to its reuse.

<u>Stratum 3</u> The clayey silt or silt generally consists of Clayey SILT or SILT little (to and), coarse to fine Sand, trace (to little) medium to fine Gravel. Portions of this stratum contain weathered rock fragments. This stratum contains a high clay and silt content. The stratum will be very moisture sensitive and difficult to reuse as compacted fill. Some of the material maybe suitable for use as compacted fill in the building and pavement areas, provided that it remains relatively dry for optimum compaction prior to its use.

Stratum 4The virgin Sandy Clay and Silt consists red brown, brown coarse to fine SAND,
trace (to some) Silt, little (to some) medium to fine Gravel or red brown coarse to
fine Sand, some (to and) Silt, little (to some) medium to fine Gravel.. This material
contains a low to moderate percentage of silt. The moderate silt content material
will be moisture sensitive and difficult to reuse as compacted fill. This material is
generally suitable for use as compacted fill provided that it does not become too wet
prior to being placed.

Stratum 5
and 6Excavated rock may be used as fill material provided that the material conforms to
the required gradation, is well graded, and has been approved prior to use by Carlin-
Simpson & Associates.ShaleState

Bedrock All rock fill (including large cobbles and boulders) must be well blended with smaller rock fragments and/or soil. Any excavated rock (and boulders) that are too large for use as structural fill should be processed through a crusher to provide suitable fill material.

The boring and test pit observations indicate that the on-site soils contain a varying percentage of silt (5% to 70.0%). The moderate to high silt content soils, particularly some of the existing fill and virgin clayey silt and silt, will be moisture sensitive. If the soil becomes too wet, it will be difficult to achieve adequate compaction. In addition, the site soils that extend below the groundwater table are completely saturated and therefore, unsuitable for reuse.

Carlin-Simpson & Associates shall evaluate the suitability of the excavated materials for use as compacted fill during the excavation and prior to its reuse. Potentially usable fill should be stockpiled and covered with tarps or plastic sheeting for protection from excess moisture. Any fill material that is wet must be dried prior to its reuse.

Proper moisture conditioning of the soil will be required. New compacted fill should be within 2% (+/-) of its optimum moisture content at the time of placement. In the event that the on-site material is too wet at the time of placement and cannot be adequately compacted, the soil should be aerated and allowed to dry or the material removed and a drier cleaner fill material used. In the event that the on-site material is too dry at the time of placement and cannot be adequately compacted, water may be needed to increase the soil moisture content for proper compaction.

The in-situ soils which exist throughout the site may become soft and weave if exposed to excessive moisture and construction traffic. The instability will occur quickly when exposed to these elements and it will be difficult to stabilize the subgrade. We recommend that adequate site drainage be implemented early in the construction schedule and if the subgrade becomes wet, the contractor should limit construction activity until the soil has dried.

The minimum compaction requirements for the various areas of the site are summarized in Table 10 below.

Area	Maximum Modified Dry Density (ASTM D-1557)
Building (below foundations)	95%
Building Slab (above foundations)	92%
Pavement Areas	92%
Exterior Slabs and Sidewalks	92%
Utility Trenches	92%
Landscape Areas	90%

Table 10 - Minimum Compaction Requirements

7.0 <u>GENERAL</u>

The findings, conclusions and recommendations presented in this report represent our professional opinions concerning subsurface conditions at the site. The opinions presented are relative to the dates of our site work and should not be relied on to represent conditions at later dates or at locations not explored. The opinions included herein are based on information provided to us, the data obtained at specific locations during the study and our past experience. If additional information becomes available that might impact our geotechnical opinions, it will be necessary for Carlin-Simpson & Associates to review the information, reassess the potential concerns, and re-evaluate our conclusions and recommendations.

Regardless of the thoroughness of a geotechnical exploration, there is the possibility that conditions between borings and test pits will differ from those encountered at specific boring or test pit locations, that conditions are not as anticipated by the designers and/or the contractors, or that either natural events or the construction process have altered the subsurface conditions. These variations are an inherent risk associated with subsurface conditions in this region and the approximate methods used to obtain the data. These variations may not be apparent until construction.

The professional opinions presented in this geotechnical report are not final. Field observations and foundation installation monitoring by the geotechnical engineer, as well as soil density testing and other quality assurance functions associated with site earthwork and foundation construction, are an extension of this report. Therefore, Carlin-Simpson & Associates should be retained by the Owner to observe all earthwork and foundation construction, to document that the conditions anticipated in this study actually exist, and to finalize or amend our conclusions and recommendations Carlin-Simpson & Associates is not responsible or liable for the conclusions and recommendations presented in this report if Carlin-Simpson & Associates does not perform the observation and testing services.

Therefore, in order to preserve continuity in this project, the Owner must retain the services of Carlin-Simpson & Associates to provide full time geotechnical related monitoring and testing during construction. At a minimum, this shall include the observation and testing of the following: 1) the removal of existing fill and unsuitable soil, where required; 2) the proofrolling of the subgrade soil prior to the placement of new compacted fill; 3) the placement and compaction of controlled fill;

4) the excavation for the building foundations; and 5) the preparation of the subgrade for the floor slabs and pavement areas.

This report has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty is expressed or implied. The evaluations and recommendations presented in this report are based on the available project information, as well as on the results of the exploration. Carlin-Simpson & Associates should be given the opportunity to review the final drawings and site plans for this project to determine if changes to the recommendations outlined in this report are needed. Should the nature of the project change, these recommendations should be re-evaluated.

This report is provided for the exclusive use of PS&S and the project specific design team and may not be used or relied upon in connection with other projects or by other third parties. Carlin-Simpson & Associates disclaims liability for any such third party use or reliance without express written permission. Use of this report or the findings, conclusions or recommendations by others will be at the sole risk of the user. Carlin-Simpson & Associates is not responsible or liable for the interpretation by others of the data in this report, nor their conclusions, recommendations or opinions.

If the conditions encountered during construction vary significantly from those stated in this report, this office should be notified immediately so that additional recommendations can be made.

Thank you for allowing us to assist you with this project. Should you have any questions or comments, please contact this office.

Very truly yours,

CARLIN-SIMPSON & ASSOCIATES

MICHAL WROBLEWSKI E.I.T. Project Manager

ROBERT B. SIMPSON P.E.

File No. 20-127

CARI	LIN-SIM	PSON &	ASSOCIA	TES		TEST BOI	RING LOG	BORING NUMBER			
D .	Sa	yreville, I	NJ	C(L DI	1 00 02	T 4 12 02	L (10 F		B-1		
Project	t :	Proposed	1 Stormwat	er Study, Bl	ock 88.02	Lot 13.02,	Lot 19 Fran	SHEET NO.:	1 of 1		
Chefit: Drillin	a Contre	rsas	Fnyironm	ontol Tochni	ool Drillir	ng Inc		JUD NUMBER: FI EVATION:	+113.5		
GROU		TER	LINIUIII			CASING	SAMPLE	CORE	TURE	DATIM.	Topo
DA'	TE TE	TIME	DEPTH	CASING	TYPE	HSA	SAMELE	CORE	TUDE	START DATE:	24/Ian/22
24/J	an/22	1040	7'0"	HSA	DIA.	3 1/4"	1 3/8"			FINISH DATE:	24/Jan/22
					WGHT		140#			DRILLER:	Mike Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	y m							
	per		Spoon per		IDE	NTIFIC					DUG
	Foot		6"		IDE	NTIFICAT	ION			REMA	RKS
1		S-1	<u> </u>							Rec = 12"	
1		5-1	2		Red Bro	wn topsoil ^y	with tilled s	ubsoil		moist to wet	
2			2						2'0"		
			4	Gr, rd br \$	5 s, cf S, l	(+) mf G w/	weathered sh	nale frag			
3		S-2	8		Gray, ree	d brown SII	LT some, coa	rse to fin	3'0"	$\operatorname{Rec} = 12"$	
			18		Sand, litt	tle (+) mediu	im to fine Gi	ravel,		moist to wet	
4			28		with wea	thered shale	e fragments				
5											
5			6								
6		S-3	29	Gr cf S, s	(-) \$, a (-)	mf G, com	oletely weath	ered shal	e	Rec = 8"	
			50/5"			, 1	2			moist	
7					Gray coa	arse to fine	Sand, some	(-) Silt,		Very dense slow a	ugering
0					<u>and (-) n</u>	nedium to f	ine Gravel,	complete	ly		
8			7		weather	ed shale					
9		S-4	12	same rd b	r					Rec = 20"	
,		51	14	Sume, ru o	1					wet	
10			15								
			27								
11		S-5	50/4"	same, rd b	r E L AB				11'0"	$\operatorname{Rec} = 6''$	
12					End of B	Soring (a) 11	<u>.'0''</u>			wet	ammlatalır
12										weathered rock @	11'0"
13										weathered rock w	110
				İ İ							
14				II							
1.5											
15				$\frac{1}{2}$							
16				†							
10											
17											
18				Į Į							
10				$\frac{1}{2}$							
19			ļ								
20				†							
]							
21											
22				$\left\{ \right\}$							
LL											

CARI	LIN-SIM	IPSON &	ASSOCIA	TES		TEST BOI	RING LOG	BORING NUMB	ER		
	Sa	yreville, I	NJ						B-2		
Project	t :	Proposed	l Stormwat	er Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran		SHEET NO.:	1 of 1	
Client:	C	PS&S	F	····					JOB NUMBER:	20-127	
	g Contra	ACTOR:	Environm	ental l'echnic	cal Drillin	ig, inc.	CAMDI F	CODE	TUDE	ELEVATION: DATUM.	+114.5
	NDWA. FE	IEK TIME	DEDTH	CASINC	TVDE		SAMPLE	CORE	TUBE	DAIUMI: STADT DATE.	1 opo
DA 24/1	1 E an/22	1215	DEF11 8'6"	UASING HSA	DIA	п5А 3 1/4"	55 1 3/8"			STAKT DATE: FINISH DATE:	24/Jan/22
24/J	an/22 an/22	1213	8'0"	HSA	WGHT	51/4	140#			DRILLER:	M Kane
2.00		100			FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	У							
	per		Spoon per	m							
	Foot		6"		IDE	NTIFICAT	ION			REMA	RKS
1		S 1	4							$P_{22} = 20"$	
1		5-1	2		Brown to	onsoil with	tilled subsoi	11		Rec – 20 wet	
2			4		<u>Brown c</u>		tilled subsol	<u>u</u>	2'0'	wet	
			4								
3		S-2	7	Rd br \$ 1 (+), cf S, t	(+) mf G				Rec = 18"	
			9							moist	
4			15		D 11						
5					Red brow	<u>wn SILT lit</u>	tle (+), coar	<u>'se to fine</u> Creavel			
5			1		<u>Sand, tra</u>	ace (+) med	ium to fine	Gravel			
6		S-3	7	same, s (+). cf S. 1 m	nfG				Rec = 18"	
Ũ		~ •	11), ••• ~, • •					moist	
7			12								
			12								
8		S-4	13	same						$\operatorname{Rec} = 18"$	
0			13							moist	
9			17						9'6"		
10									,0		
			11								
11		S-5	24	Gr cf S, s	\$, a (-) mf	G, complet	ely weathere	d shale		Rec = 18"	
10			32							wet	
12			44								
13											
15					Grav coa	arse to fine	Sand, some	Silt,			
14				İ İ	and (-) n	nedium to f	ine Gravel,	<u> </u>			
				Į	<u>complete</u>	ely weather	ed shale				
15			0								
16		56	y 24	come o re	fG					$\mathbf{R}_{\mathbf{ec}} = 8^{"}$	
10		3-0	35	same, a m	10					Kec – o wet	
17			41						17'0"	Auger refusal on d	ense
					End of B	Boring @ 17	7'0''			weathered shale @) 16'6"
18				ļ							
10				ļ							
19				$\frac{1}{2}$							
20				ł I							
20			1	t I							
21				Ī							
				ļļ							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA	TES	S		TEST BOI	RING LOG	BORING NUMBER			
	Sa	yreville, I	NJ							B-3		
Project	t:	Proposed	l Stormwat	ter S	Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	SHEET NO.:	1 of 1		
Client:	<u> </u>	PS&S	F •		175 1 1				JOB NUMBER:	20-127		
Drillin	g Contra	actor:	Environm	enta	al Technic	al Drillin	ig, Inc.	0 1 2 5 2 7 7	CODE		ELEVATION:	+117.0
GROU	NDWA'	FER			1 GTL G		CASING	SAMPLE	CORE	TUBE	DATUM:	Торо
	TE (22	TIME	DEPTH	CA	ASING	TYPE	HSA	SS 1 2/01			START DATE:	24/Jan/22
24/J	an/22	1400	10'6''		HSA	DIA.	3 1/4"	1 3/8"			FINISH DATE:	24/Jan/22
24/J	$\frac{an}{22}$	1545	10'0"		Н5А Н5А	WGH1 FALL		140# 30"			DKILLEK: INSPECTOD:	MW
23/J Donth	all/22 Cosing	Samula	IUU Dlawa an	S	IISA	FALL		50			INSI ECTOR.	101 00
(ft)	Blows	Sample	DIOWS OII Sampla	y								
(11.)	ner	Tumber	Sample Snoon ner	m								
	Foot		6"			IDE	NTIFICAT	ION			REMA	RKS
	FUUL		2			101						
1		S-1	1								Rec = 18"	
			2			Brown to	opsoil with	tilled subsoi	il		moist to wet	
2			2									
			2							2'6"		
3		S-2	5	F	Rd br Cy \$	51(+), cf :	S, t mf G				$\operatorname{Rec} = 18"$	
			6								moist	
4			9									
5				4								
5			2									
6		\$ 3	3		same $s(+)$	cfSt(-	+) mf G				$R_{ec} = 12''$	
0		3-3	4	5	same, s (+)	Red brow	vn Clavev !	SILT little (+) coars	e	Rec = 12 moist	
7			8			to fine Sa	and, trace i	nedium to fi	ine Grav	<u>e</u> l	monst	
,			7				and, truce i	incurum to n		<u></u>		
8		S-4	, 10	s	same						$\operatorname{Rec} = 0$	
			14								moist	
9			16								pushing gravel	
				ΠL						9'6"		
10						Mottled	light gray,	light brown	<u>, red bro</u>	wn		
			5			coarse to	fine SANI	<u>), and (+) Si</u>	lt			
11		S-5	9	N	Mttld lt gr,	$\frac{1}{1}$ lt br, rd t	$\frac{\text{or cf S, a (+)}}{(-)}$) \$	1 / 1	11'0"	$\operatorname{Rec} = 22"$	
12			15	ŀ	d br cf S,	s (+) \$, s	(-) mf G, w	/seams of co	mpletely		moist to wet	
12			26	V	veathered	snale						
13				+								
15				11								
14				11								
				11								
15				11								
			6			Red brow	wn coarse t	o fine Sand,	<u>L</u>			
16		S-6	13	s	same	some (+)	coarse to f	<u>ine Silt,</u>			$\operatorname{Rec} = 18"$	
1.5			15			<u>some (-)</u>	<u>medium to</u>	fine Gravel	2		wet	
17			19			<u>complete</u>	ely weather	<u>ed shale</u>				
19				$\left\{ \right\}$								
10				+								
19				11							verv dense, slow a	agering
				11							- j , e - e // a	88
20				11								
			9									
21		S-7	21	s	same, t (+)	mf G					$\operatorname{Rec} = 14"$	
			38			.					wet	
22			50/3"			End of B	oring (a) 22	<u>'0''</u>		22'0"	Auger refusal, wea	thered shale

CARI	LIN-SIM	IPSON &	ASSOCIA	TES		TEST BOI	RING LOG	BORING NUMBER			
	Sa	yreville,	NJ						B-4		
Project	t:	Proposed	1 Stormwat	er Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran		SHEET NO.:	1 of 1	
Client:	- Canta	PS&S	F					JOB NUMBER:	20-127		
Drillin	g Contra NDWA	actor:	Environm	ental lechnic	ai Driinr	ig, inc.	CAMDI F	CODE	TUDE	ELEVATION:	+114.0
	NDWA. FE	I E.K TIME	DEDTU	CASINC	TVDE		SAMPLE	CORE	IUDE	DATUNI; Stadt date.	10p0
25/I	9n/22	800	7'6"	HSA	DIA	3 1/4"	1 3/8"			FINISH DATE:	24/Jan/22
23/0	an/22	000	70	11.573	WGHT	51/4	140#			DRILLER:	M Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S					8		
(ft.)	Blows	Number	Sample	У							
	per		Spoon per	m							
	Foot		6"		IDE	NTIFICAT	ION			REMA	RKS
1		§ 1	2							$D_{22} = 22''$	
1		5-1	2		Brown t	onsoil with	tilled subsoi			Rec - 22	
2			4		DIOWILU	upson with	tilleu subsol	<u>u</u>	2'0"	moist to wet	
2			5						20		
3		S-2	7	Rd br Cy S	5 s, cf S, 1	(-) mf G				Rec = 22"	
			8							moist	
4			8		Red bro	wn Clayey	SILT some,	coarse			
					<u>to fine S</u>	and, little (-	-) medium to	o fine			
5					Gravel						
		S-3A	4	same						$\operatorname{Rec} = 22"$	
6			8						6161	moist	
7		S-3R	14	Rd br cf S	s (+) \$ s	(-) mf G w	/weathered t	·k fra	00		
/		5-50	15		, s (') ¢, s	, (-) III (), w		ĸng			
8		S-4	21	same, com	pletely w	eathered sha	le			Rec = 8"	
_			18		1 2					moist to wet	
9			20								
10										very dense, slow a	ugering
11		S 5	15			41 1 - 1	1-			to 10'	
11		3-3	29	same, com	Bed bro	eathered sha	ne o fino Sond			$\text{Rec} = 20^{-1}$	
12			50/5"		some (+)	Silt. some	(-) medium (∟ to fine		wet	
12			0.010		Gravel,	completely	weathered S	Shale			
13											
14				ļļ							
1.7				l I							
15			12								
16		S-6	29	same or 1	mfG					Rec = 12''	
10		50	50/5"	Sume, gr, i	ini O				16'6"	wet	
17					End of B	Boring @ 16	5'6"			Auger refusal @ 1	6'6" on
				II						completely weathe	red shale
18				ļļ							
10				ļ							
19				ł							
20				†							
20				t I							
21				İ İ							
				II							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA	Tŀ	ES		TEST BOI	RING LOG	BORING NUMBER			
	Sa	yreville,	NJ							B-5		
Projec	t:	Proposed	l Stormwat	er	Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran		SHEET NO.:	1 of 1	
Client:	<i>c</i>	PS&S				1.5.111	.			JOB NUMBER:	20-127	
Drillin	g Contra	actor:	Environm	ent	al Technic	cal Drillin	ig, Inc.	0 + 3 6 3 F 7	CODE		ELEVATION:	+112.5
GROU	NDWA'	TER					CASING	SAMPLE	CORE	TUBE	DATUM:	Торо
DA	TE (22	TIME	DEPTH	C	CASING	TYPE	HSA	SS			START DATE:	25/Jan/22
25/J	an/22	950	6'6"		Open	DIA.	3 1/4"	1 3/8"			FINISH DATE:	25/Jan/22
25/J	an/22	1550	6'0''		Open	WGHT		140#			DRILLER:	M Kane
	a :	G 1	DI	C		FALL		30**			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	s v								
(11.)	BIOWS	Number	Sample	m								
	per Foot		Spoon per			IDF	NTIFICAT	ION			RFMA	RKS
	root		4			IDE	ITITICAL	1011			KEMA	KK5
1		S-1	3			Brown to	opsoil with	tilled subsoi	il		$\operatorname{Rec} = 22"$	
			4						_	1'6"	moist	
2			5		Rd br cf S	, a (+) \$, l	(-) mf G, w	/seams of Cy	/\$			
			5									
3		S-2	9								$\operatorname{Rec} = 20"$	
			10								moist	
4			12									
5						Red brow	wn coarse t	o fine Sand,				
			3			<u>and (+) S</u>	<u>Silt, little (-)</u>) medium to	fine			
6		S-3	5		same	<u>Gravel</u> , v	with seams	of Clayey Si	i <u>lt</u>		$\operatorname{Rec} = 20''$	
7			6								moist to wet	
/			6	_								
0		S 4	6 7		¢ - (() -60 4	() f C				D 22"	
8		5-4	/		same, 5 a (-), ci S, t	(-) I G				$\text{Rec} = 22^{\circ}$	
0			0 7								wet	
9			/									
10				ł								
10			10									
11		S-5	10		same, cf S.	, a(+) \$					Rec = 8"	
			16								wet	
12			11							12'0"	very dense, slow a	ugering
13												
14						Red brow	wn complet	ely weather	ed shale			51011
											Auger refusal @ 1	5'0''
15			16									
16		56	10		Rd broom	nlatalyw	anthered abo	ام		15'0"	$\mathbf{R}_{ec} = 6$ "	
10		5-0	30/3		Ku bi com	Fnd of B	callered sha	110 X'0''		139	Kec = 0	
17						Eng of D	u_{μ} 15				wet	
1 /												
18				1								
10				1								
19				1								
				1								
20				Į								
21												
22												

Image: Sape ville, NJ Image: Structure Status Image: Structure Status SHEET NO:: 1 of 1 COMPOSED STRUCTURE Status OBMER: 20-127 CASING SAMPLE CORE TUBE DATUME: Topo DATE TIME DEPTH CASING SAMPLE CORE TUBE DATUM: Topo DATE TIME DEPTH CASING SAMPLE CORE TUBE DATUM: Topo DATE TIME DEPTH CASING TYPE ISA SS START DATE: 25/Jan/22 Zodan/22 ISA START DATE: 25/Jan/22 Zodan/22 ISA START DATE: 25/Jan/22 Zodan/22 ISA OPT INPORT OPT INPORT INPORT INPORT START DATE: 25/Jan/22 INPORT START DATE: 25/Jan/22 START DATE: 25/Jan/2	CARI	LIN-SIM	PSON &	ASSOCIA	Tŀ	ES		TEST BOI	RING LOG	BORING NUMBER			
Project: Proposed Storawater Study, Block 88.02 Lot 13.02, Lot 19 Franklin, NJ SHEET NO:: 1 of 1 Drilling Contractor: Environmental Technical Drilling, Inc. ELEVATION: +112.0 OR NUMBER: CASING SANPLE CORE ELEVATION: +112.0 DATE TIME DEPTH CASING TYPE HSA SS START DATE: 20137 Zoldan/22 130 60° Open DIA. 31/4" 13/8" HINTHYDE: 25/Jan/22 Zoldan/22 130 60° Open DIA. 31/4" 14/9" DINTIF: 25/Jan/22 Zoldan/22 150 60° Open DATE TWA Main Non		Sa	yreville, I	NJ							B-6		
Client: DOB NUMBER: 2012 DIMING CONTRACTOR: CASING SAMPLE (CORE IT USE DATUME: Topo DATE: TIME DEPTH CASING SAMPLE (CORE IT USE DATUME: CS/mu22 DATE: TIME DEPTH CASING SAMPLE (CORE IT USE DATUME: CS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 ZS/mu22 Z SIME Blows on 8 MW OPD PC P POT DEVTIPECATION REMARKS SIME Spon pcr Brown topsoil with filled subsoil moist Z SIME Topon	Project	t :	Proposed	l Stormwat	er	Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	SHEET NO.:	1 of 1		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Client:		PS&S							JOB NUMBER:	20-127		
GROUNDWATER CASING SAMPLE CORE TUBE DETER Topo DATE TIME DEPTH CASING SAMPLE CORE TIBE DSTATE TORE 25/Jan/22 25/Jan/22 1130 60" Open DIA. 3 1/4" 138" FINISH DATE: 25/Jan/22 25/Jan/22 1550 60" Open PATE Association PINISH DATE: 25/Jan/22 25/Jan/22 1550 60" Open PATE Jan/4" 138" PINISH DATE: 25/Jan/22 25/Jan/22 1580 60" Open PATE Jan/4"	Drillin	g Contra	ictor:	Environm	ent	al Technic	al Drillin	ıg, Inc.		ELEVATION:	+112.0		
DATE TIME DEPTII CASING TYPE IISA SS STARTDATE: 25/Jan/22 25/Jan/22 1536 60" Open UMA: 3/4" 138" HINSH DATE: 25/Jan/22 25/Jan/22 1556 60" Open WGHT 1400 DRILLER: MKane Depth Casing Sample Bows on FALL 30" INSPECTOR: MW Depth Casing Sample F F 1 30" INSPECTOR: MW Period Foot Sample F F 10 Rec = 18" moist 2 S-18 10 Rd br Cf S, s C, 1(+) mf G, completely weathered shale Rec = 18" moist 3 13 fine Sand, trace (+) fine Gravel 30" Rec = 18" moist 4 S-2 20 Rd br cf S, s S, 1(+) mf G, completely weathered shale Rec = 12" moist 5 13 16 18 14 18 19 10 14 10 11 10 10 10 10 10 <	GROU	NDWAT	FER					CASING	SAMPLE	CORE	TUBE	DATUM:	Торо
223Jan/22 1130 60" Open D1A. 31/4" 13%" FINISH DATE: 25/Jan/22 25Jan/22 1550 60" Open Val. 30" INSPECTOR: MKan22 25Jan/22 Sample For FALL 30" INSPECTOR: MW Depth Casing Sample Sample Sample Number Sample Number Number Ref R	DA	ГЕ	TIME	DEPTH	C	CASING	TYPE	HSA	SS	-		START DATE:	25/Jan/22
253m2215860°OpenWG11140°DRULLER:M KaneDepthCasingSampleNumberSampleY30°INSPECTOR:MW (h) Blows on someSampleYIDENTIFICATIONREMARKSRec = 18° $per6°S-14210Brown topsoil with rilled subsoil16°2S-1810Rd br Cy S s, cf S, t(+) f G16°Rec = 18°310Rd br Cy S s, cf S, t(+) f G16°16°31313Red brown Claves SULT some, coarse tofine Sand, trace (+) fine Gravel30°4S-2229Rd br cf S, s $, 1 (+) mf G, completely weathered shaleRec = 18°6S-314sameRec = 22°8S-429same, 1(+) $Red brown coarse to fine Sand, some Sit, little (+) medium to fineGravel, completely weathered shaleRec = 22°93619Same, 1 $Rec = 20°101919Same, 1 $Rec = 142°11S-515same, 1 $Rec = 142°1220161614'2°1314141414'1°14141414'1°151614'1°161714'1°171814'1°181914'1°1914'1°1914'1°1014'1°1114'1°1216'1°1314'1°$	25/J	an/22	1130	6'0"		Open	DIA.	3 1/4"	1 3/8"			FINISH DATE:	25/Jan/22
DepthCasing sponSample Spon \mathcal{P} Image: construction of the systemImage: construction of t	25/J	an/22	1550	6'0''		Open	WGHI		140#			DKILLEK: INSDECTOD.	M Kane
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Donth	Casing	Samula	Dlaws on	S		FALL		30			INSPECTOR:	IVI VV
IntroName FoutSamp G'' DENTIFICATIONREMARKS15.1A $\frac{2}{-1}$ Brown topsoil with tilled subsoil 10° Rec = 18" 	(ft)		Sample	Diows on Sampla	y								
ProdSpronIDENTIFICATIONREMARKS1S-1A2Brown topsoil with tilled subsoil (1%)moist2S-1B10Rd br Cy \$ s, cf \$, t(+) f Gmoist31919Rd br Cy \$ s, cf \$, t(+) f G104S-229Rd br cf \$, s \$, 1(+) mf G, completely weathered shale30°6S-314sameRec = 18"72323sameRec = 110°8S-429same, 1(+) \$Rec = 16°93623same, 1(+) \$Rec = 22"1019S-51611S-515same, 1 \$1250/2"same, 1 \$Rec = 142"14S-650/2"same, 1 \$161714Same14/2"16161414/2"17181414181414191414141516151614161417141814191419141014151416141714181419141914141415141614171418141914191410141414<	(11.)	ner	Tumber	Sampic Snoon ner	m								
1 S-1A 2 Brown topsoil with tilled subsoil Rec = 18" 2 S-1B 10 Rd br Cy \$ s, cf S, t(+) f G 16" 3 13 Red br cy \$ s, cf S, t(+) f G 10" 4 S-2 29 Rd br cf S, s \$, 1(+) mf G, completely weathered shale 30" 4 S-2 29 Rd br cf S, s \$, 1(+) mf G, completely weathered shale Rec = 12" 6 S-3 14 same Rec = 12" moist 7 22 same, 1(+) \$ Rec brown coarse to fine Sand, some Silt, little (+) medium to fine Rec = 22" 8 S-4 29 same, 1 (+) \$ Rec = 20" 9 36 same, 1 \$ Rec = 20" 10 11 S-5 15 same, 1 \$ 12 20 15 same 142" 14 S-6 50/2" same 14'2" 15 50/2" same 14'2" 16 14 140" Net 20" 17 18 14 140" 18 19 140" 140"		Foot		6"			IDE	NTIFICAT	ION			REMA	RKS
1 1 Brown topsoil with tilled subsoil moist 2 S-18 10 Rd br Cy S s, ef S, 1 (+) f G 10 3 13 13 Red brown Clavev SILT some, coarse to 30" 4 S-2 29 Rd br cf S, s \$, 1 (+) mf G, completely weathered shale Rec = 18" 6 S-3 14 same Rec = 12" 7 23 23 same, 1 (+) S Rec = 22" 8 S-4 23 same, 1 (+) S Rec = 22" 9 36 Same, 1 (+) S Rec = 22" 9 36 Same, 1 (+) S Rec = 22" 10 13 19 10 19 11 S-5 15 same, 1 S Rec = 20" 12 20 20 asme 14" 14 5 15 same, 1 S Rec = 1"" 16 10 10 10 10 10 13 14 16 16 10 10 10 14 16 16 16 142" 140" Re		1000	S-1A	2								Rec = 18"	
2 S-1B	1			1			Brown to	opsoil with	tilled subsoi	<u>il</u>		moist	
2 S-18 10 Rd br CyS s, cl S, t(+) 1G Some coarse to fine Sand. trace (+) fine Gravel 30° 3 13 13 10 Rd br cf S, s \$, 1(+) mf G, completely weathered shale Rec = 18" moist 6 S-3 14 same Rec = 12" moist moist 7 22 23 same Red brown coarse to fine Sand. moist Rec = 22" moist 9 23 same, 1(+) \$ Red brown coarse to fine Sand. moist Rec = 22" moist to wet very dense, slow augering 10 13 14 same, 1 \$ Rec = 20" wet 11 S-5 15 same, 1 \$ Rec = 20" wet 12 20 20 asame in fine Graved is and i			~	2				()			1'6"		
3 5 Ked brown Clavey SLL Isome, coarse to 30" 4 S-2 29 Rd br of S, s \$, 1(+) mf G, completely weathered shale 30" 6 S-3 14 same Rec = 12" 6 S-3 14 same Rec = 22" 7 22 same moist Rec = 22" 8 S-4 29 same, 1(+) \$ Rec = 50" Rec = 22" 9 36 Same, 1(+) \$ Rec = 20" weit very dense, slow augering 10 15 15 same, 1\$ Rec = 20" wet 12 20 same, 1\$ same 4 Auger refusal @ 140" 14 S-6 50/2" same 14'2" Auger refusal @ 140" 16 17 16 14'2" 4 4 4 16 17 18 14	2		S-1B	10	_	Rd br Cy S	5 s, cf S, t	(+) f G					
3 13 Intervalue Critic Gravel 30 4 S-2 19 29 Rd br of S, s \$, 1 (+) mf G, completely weathered shale Rec = 18" moist 6 S-3 14 same Rec = 12" moist 7 22 23 same Rec = 22" moist 8 S-4 29 same, 1 (+) \$ Rec = 22" moist 9 36 S-4 29 same, 1 (+) \$ Rec = 22" moist 10 36 S-5 16 same, 1 \$ Rec = 20" wet 11 S-5 16 same, 1 \$ Rec = 20" wet 12 20 S-6 50/2" same 15 Rec = 1" wet 14 S-6 50/2" same 142" wet wet 15 16 142" Wet Nec = 1" 16 14 14 14 14 14 14 14 16 17 18 14 14 14 14 14 19 19 14 14 14 14 14 14 16 14 14 <td>2</td> <td></td> <td></td> <td>) 12</td> <td></td> <td></td> <td>Red broy</td> <td>wn Clayey : d trocc (1)</td> <td><u>SILT some,</u></td> <td>coarse to</td> <td><u>)</u> 21011</td> <td></td> <td></td>	2) 12			Red broy	wn Clayey : d trocc (1)	<u>SILT some,</u>	coarse to	<u>)</u> 21011		
4 S-2 12^{-29} Rd br of S, s \$, 1 (+) mf G, completely weathered shale Rec = 18" moist 6 S-3 14^{-1} same Rec = 12" moist 7 22 23 same, 1 (+) \$ Rec = 22" moist 9 36 5^{-1} 8^{-1} Rec = 22" moist over very dense, slow augering 10 36^{-1} 5^{-1} 5^{-1} 8^{-1} 8^{-1} 10 36^{-1} 5^{-1} 5^{-1} 8^{-1} 8^{-1} 10 36^{-1} 5^{-1} 5^{-1} 5^{-1} 8^{-1} 8^{-1} 11 S-5 15^{-1} 5^{-1} 5^{-1} 5^{-1} 8^{-1} 8^{-1} 8^{-1} 12 20^{-1} 8^{-1} 8^{-1} 8^{-1} 8^{-1} 4^{-1}	3			10			nne San	u, trace (+)	nne Gravel	-	3.0.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4		S-2	29		Rd br cf S	s \$ 1(+)	mfG com	letely weath	ered shal	e	Rec = 18''	
5 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 8 8 23 8 8 8 8 8 8 8 8 8 8 8 23 8 8 8 9	•		52	2)			, 5 0, 1 (')		Jetery weath	lered shur	e	moist	
6 S.3 8 14 same Rec = 12" moist 7 22 23 same, 1 (+) \$ moist moist 9 36 29 same, 1 (+) \$ Rec = 22" moist to wet 9 36 Some Silt, little (+) medium to fine very dense, slow augering very dense, slow augering 10 10 11 S-5 15 same, 1 \$ Rec = 20" 11 S-5 15 same, 1 \$ Rec = 20" wet 12 20 20 20 20 14'2" wet 14 S-6 50/2" same 14'2" wet 4uger refusal @ 14'0" 14 S-6 50/2" same 14'2" wet 4uger refusal @ 14'0" 14 14 $14'2"$ $14'2"$ wet $14'2"$ $14'2"$ 16 $14'1$ $14'10''$ $14'10''''''''''''''''''''''''''''''''''$	5				t								
6 S-3 14 same Rec = 12" 7 22 22 moist 8 S-4 29 same, 1(+) \$ Rec = 22" 9 36 Gravel, completely weathered shale moist rer y dense, slow augering 10 10 19 same, 1 \$ Rec = 20" wet 11 S-5 15 same, 1 \$ Rec = 20" wet 12 20 20 same, 1 \$ Rec = 1" wet 13 14 S-6 50/2" same 14'2" Auger refusal @ 14'0" 16 50/2" same 14'2" wet wet 16 17 18 14 14'2" wet 14'2" 18 19 14'1 </td <td></td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				8									
7 18 22 23 23 9 29 9 36 9 36 10 36 10 11 8-5 15 16 16 13 4 15 50/2" 16 14/2" 17 16 18 19 19 11 14 15 15 16 16 14/2" 17 16 18 19 20 10 21 10	6		S-3	14		same						$\operatorname{Rec} = 12"$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	_			18								moist	
8 S-4 $\frac{23}{29}$ same, 1 (+) \$ Rec = 22" moist to wet very dense, slow augering 9 36 $\frac{36}{36}$ $\frac{36}{36}$ $\frac{36}{36}$ Rec = 20" 10 10 19 $\frac{15}{16}$ same, 1 \$ Rec = 20" 11 S-5 $\frac{16}{20}$ same, 1 \$ Rec = 20" 12 20 $\frac{19}{20}$ same, 1 \$ Rec = 1" 13 $\frac{14}{20}$ S-6 $\frac{50/2"}{50/2"}$ same $\frac{14'2"}{14'2"}$ Auger refusal @ 14'0" 16 $\frac{14}{14}$	7			22									
8 3.4 22 same 1(1') 3 $Rec = 22$ 9 36 36 $Red brown coarse to fine Sand, some Silt, little (+) medium to fineGravel, completely weathered shalemoist to wetvery dense, slow augering101915same, 1 $Rec = 20^{\circ}11S.5168me, 1 $Rec = 20^{\circ}1220168me, 1 $Rec = 20^{\circ}135.650/2^{\circ\circ}same14'2''1614'2''Rec = 1''Rec = 1''1614'2''Rec = 1''Rec = 1''171814'2''Rec = 1''1814'2''Rec = 1'''Rec = 1''''2014'2'''14'2'''''''''''''''''''''''''''''''''''$	0		S 4	23		aama 1(+)	۰¢					$D_{22} = 22''$	
9 36 Some Sit, little (-h) medium to fine Gravel, completely weathered shale very dense, slow augering 10 19 S-5 15 same, 1 \$ Rec = 20" 12 20 20 Auger refusal @ 14'0" Auger refusal @ 14'0" 14 S-6 50/2" same 14'2" Wet 16 16 14'2" wet 4uger refusal @ 14'0" 17 16 14'2" wet 14'2" 18 19 14'2" wet 14'2" 19 10 14'2" Wet 14'2"	8		5-4	29		same, I (+)) ð Red brou	wn coarsa t	a fina Sand			$\text{Rec} = 22^{n}$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	9			36			some Silt	t. little (+) r	<u>o nne Sanu,</u> nedium to fi	ne		very dense slow a	ugering
10 19 11 S-5 12 20 13 20 14 20 15 50/2" 16 14'2" 17 14'1' 18 14'1' 19 14'1' 10 14'1'' 11 14'1'' 12 14'1'' 14'1'' 14'1'' 15 50/2" 16 14'1'' 17 14'1'' 18 14'1'' 19 14'1'' 10 14'1''	_						Gravel, o	completely	weathered s	hale		very active, stew a	agering
11 S-5 19 Rec = 20" 12 20 20 13 20 20 13 50/2" same 14 50/2" same 15 50/2" same 16 14'2" Rec = 1" 17 14'2" wet 18 10 100 19 100 100 20 100 100 21 100 100	10				t I								
11 S-5 15 same, 1 \$ Rec = 20" wet 12 20 16 wet Wet Wet 13 14 S-6 $50/2"$ same 14'2" Auger refusal @ 14'0" 15 16 14'2" Wet Wet Wet 16 17 14'2" Wet Wet 18 19 14'2" Wet Wet 20 19 14'2" Wet Wet				19									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11		S-5	15		same, 1 \$						$\operatorname{Rec} = 20"$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	10			16								wet	
13	12			20									
14 Auger refusal @ 14'0" 14 $50/2"$ 15 $14'2"$ 16 $14'2"$ 17 18 19 $14'2"$ 20 $14'2"$ 21 $14'2"$	13												
14	10				t								
S-6 50/2" same 14'2" Rec = 1" 15 Image: Section of Boring @ 14'2" wet 16 Image: Section of Boring @ 14'2" wet 17 Image: Section of Boring @ 14'2" wet 18 Image: Section of Boring @ 14'2" wet 19 Image: Section of Boring @ 14'2" wet 20 Image: Section of Boring @ 14'2" Image: Section of Boring @ 14'2" 21 Image: Section of Boring @ 14'2" Image: Section of Boring @ 14'2"	14				t I							Auger refusal @ 1	4'0"
15 End of Boring @ 14'2" wet 16			S-6	50/2"		same					14'2"	$\operatorname{Rec} = 1$ "	
16	15						End of B	Boring @ 14	2"			wet	
	16				ł								
17	16				ł								
	17												
18	1 /												
19	18				t								
19]								
	19												
				ļ									
21	20			ļ									
	21				Į ∣								
	21			ļ	1								
22	22												

CAR	LIN-SIM	IPSON &	ASSOCIA	TES		TEST BOI	RING LOG	BORING NUMBER			
	Sa	yreville, I	NJ						B-7		
Projec	t:	Proposed	l Stormwat	er Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran		SHEET NO.:	1 of 1	
Client:		PS&S							JOB NUMBER:	20-127	
Drillin	g Contra	actor:	Environm	ental Technio	al Drillir	ıg, Inc.		ELEVATION:	+114.0		
GROU	NDWAT	ΓER	-			CASING	SAMPLE	CORE	TUBE	DATUM:	Торо
DA	ГЕ	TIME	DEPTH	CASING	TYPE	HSA	SS			START DATE:	25/Jan/22
25/J	an/22	1330	11'3"	Open	DIA.	3 1/4"	1 3/8"			FINISH DATE:	25/Jan/22
25/J	an/22	1530	8'0"	Open	WGHT		140#			DRILLER:	M Kane
26/J	an/22	1300	7'0''	Open	FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	y m							
	per		Spoon per		IDE					DEMA	DIZG
	Foot		6"		IDE Tenneile	NTIFICAT	ION			REMA	KKS
1		S_1	2		<u>1 opsoli v</u>	with tilled s	<u>udsoll</u>		0'10"	Rec = 12''	
1		5-1	8		Red bro	wn coarse t	o fine Sand		010	moist	
2			14		some (+)	Silt, little (-) medium t	_ o fine		monst	
-			9		Gravel	<u>Shiq hitle (</u>	<u>j incurum t</u>	<u>o 11110</u>	2'6"		
3		S-2	19	Rd br cf S	$\frac{s \$. 1 (+)}{s \$. 1 (+)}$	mf G. com	oletely weath	ered shal	e	Rec = 20''	
-		~ _	22		,- +,- ()	, -			-	moist	
4			28							very dense, slow a	ugering
										5	0 0
5				1							
			5								
6		S-3	9	same, w/se	eam of soi	1				$\operatorname{Rec} = 22"$	
			16							moist to wet	
7			19								
			13								
8		S-4	19	same, rd b	r, lt gr a (·	-) \$				$\operatorname{Rec} = 12"$	
			21		Red bro	wn coarse t	o fine Sand,	_		wet	
9			39		some Sil	<u>t, little (+) r</u>	<u>nedium to fi</u>	ine Grav	<u>el,</u>		
10					<u>complete</u>	ely weather	ed shale				
10			7								
11		S 5	/ 12	some $1(\pm)$	(±) r	nfG				$P_{ee} = 12''$	
11		3-3	12	same, I (+)	, s (') I					Ket – 12 wet	
12			35							wet	
12											
13											
14											
15											
			17								
16		S-6	50/3"	same					16'0"	Rec = 6"	
					End of B	Boring @ 16	<u>5'0''</u>			wet	~~~~
17				ļļ						Auger refusal @ 1	6'0" on
10										completely weathe	red rock
18											
10				ł							
19				+							
20											
20				†							
21				†							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA		BORING NUMB	ER						
	Sa	yreville, 1	NJ									B-8
Project	t:	Proposed	l Stormwat	ter	Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran		SHEET NO.:	1 of 1	
Client:	- Canta	PS&S	F		al Tashais		a Inc		JOB NUMBER:	20-127		
	g Contra NDWA	ACLOF: FED	Environm	ent	al l'echnic	ai Driiin	ig, inc.	SAMDI F	CODE	THDE	ELEVATION:	+112.0
	NDWA. FF	I E.N. TIMF	перти	C	ASINC	TVDE	LASING	SAMFLE	CORE	IUDE	DATUMI; STADT DATE:	25/Ion/22
DA	No (Groundw	ater Readin	<u>ι</u> σ	ASING	DIA	3 1/4"	1 3/8"			FINISH DATE:	25/Jan/22
	110	Jiounum	atti ittuaii			WGHT	0 1/1	140#			DRILLER:	M Kane
						FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S					-			
(ft.)	Blows	Number	Sample	y m								
	per		Spoon per			IDE						DUG
	Foot		6"			IDE	NTIFICAT	ION			REMA	RKS
1		S-1	1			Brown to	onsoil with	tilled subsoi	il		Rec = 18"	
-		~ -	2			2101110		uncu subsol	<u></u>		moist	
2			3							2'0"		
			5		Rd br cf S	, s (+) \$, l	(+) mf G					
3		S-2	10			Red brow	wn coarse t	<u>o fine Sand,</u>	<u> </u>		$\operatorname{Rec} = 18''$	
4			14			some (+)	Silt, little (+) medium	<u>to fine</u>		moist	
4			13			Graver				4'6"		
5				1						10		
			8									
6		S-3	20		Rd br cf S	, s (-) \$, s	(-) mf G, co	mpletely we	athered		$\operatorname{Rec} = 20"$	
7			29		shale	D 11		6 6 1			moist to wet	
/			4/			Red brow	wn coarse t	<u>o fine Sand,</u>	<u>.</u> 		very dense, slow a	ugering
8						<u>Some (-)</u> Gravel. (<u>siit, soine (</u> completely	<u>-) meanum t</u> weathered s	<u>o nne</u> shale		Auger refusal @ 8	0
0			25				<u>compretery</u>	in cutifici cu s	mure			
9		S-4	50/1"		same					8'9"	$\operatorname{Rec} = 4"$	
1.0						End of B	oring @ 8'	<u>9''</u>			moist	
10				4							Auger refusal 8'9"	on harder
11				┥╎							weathered shale	
11												
12				1								
10												
13				4								
14												
14												
15				1								
16				$\left \right $								
17				$\left \right $								
17				łł								
18				1								
19												
20				$\left \right $								
20				1								
21				1								
22												

CARI	JN-SIM	IPSON &		TE	2S	TEST BORING LOG					BORING NUMB	ER P 0
Ductor	Sa	Drevine, I	NJ 1 64 a marca a 4		C4 J DL	al. 00 03	T +4 12 00	L .4 10 E	LE. NIT		SHEET NO .	D-9
Project	:	Proposed	1 Stormwat	er	Study, BI	DCK 88.02	Lot 15.02,	Lot 19 Fran	ikiin, NJ		SHEET NU.:	1 01 1
Chent:	- Contro	PS&S	Environm		al Taahni		a Ino				JUB NUMBER:	20-127
Drininį	g Contra	ICLOF:	Environme	ent	al l'echnic	ai Driini	ig, inc.	CAMDIE	CODE	TUDE	ELEVATION:	+108.0 T
GRUU	NDWA I	TIME	DEDTH	0	ACINC	TYDE	CASING	SAMPLE	CORE	TUBE		
	LE (22		DEPTH	C	ASING	IYPE	HSA 2 1/4	55			SIAKI DAIE:	25/Jan/22
20/J	an/22	800	8'3" 41011		Open	DIA. WCUT	3 1/4	1 3/8"			FINISH DATE:	26/Jan/22
31/W	ar/22		4.0.		lest Pit	WGH1 FALL		140#			DRILLER: INSDECTOD:	MW
D 41	C	C 1 .	DI	e		FALL		30			INSPECTOR:	IVI VV
Deptn	Casing	Sample	Blows on Semula	v								
(11.)	DIOWS	Number	Sample Speen new	m								
	per Foot					IDF	NTIFICAT	ION			RFMA	RKS
	FOOL		2		Brown tonsoil with tilled subsoil						KEMA	KK5
1		S-1	1			Brown to	opsoil with		$\operatorname{Rec} = 27"$			
			3				•	1'6"	moist			
2			4		Rd br cf S.	, a (-) \$, s	(+) mf G, w	ag				
			5			Red brow	<u>wn coarse</u> t	Silt				
3		S-2	8			some (+)	coarse to f		Rec = 18"			
Í			7			many we	eathered Sh	3'3"	moist			
4			16									
						Red brow	wn complet	4'3"				
5				[[
			8		Rd br, higl	h weath Sl	h, high fract	ure				
6		S-3	16								$\operatorname{Rec} = 20"$	
			27			Red brow	<u>wn highly v</u>	veathered S	hale,		wet	
7			44			<u>highly fr</u>	actured				very slow augering	5
											a 1 0 1 0	
8											auger refusal 8'0"	
0		6.4	35								D 41	
9		8-4	50/2"		same					0161	$\text{Rec} = 4^{\prime\prime}$	
10				ł ŀ		End of D	oning @ 0!	611		9.0	Augor rofugal 0'6"	on hardor
10				$\left \right $		Ella ol d	oring (a) 9	0			Auger refusal 90	on narder
11				łł							Share	
11												
12				1								
				11								
13				t I								
				t I								
14				1								
15												
16												
1.5												
17				┆╎								
10				ł								
18				$\left \right $								
10				$\left \right $								
19				$\left \right $								
20												
20												
21			ļ	†								
				t								
22												

CARI	LIN-SIM	IPSON &	ASSOCIA	TES	TEST BORING LOG					BORING NUMB	ER
D .	Sa	yreville, I	ŊJ			T / 10.00	L . 10 E				B-10
Projec	t :	Proposed	l Stormwat	ter Study, Bl	ock 88.02	Lot 13.02,	Lot 19 Fran	iklin, NJ		SHEET NO.:	1 of 1
Client:	a Contra	PS&S	Environm	ontol Toohni	aal Duillin	a Ino				JOB NUMBER:	20-127
		TFP	Environini	ental rechin	cal Driini	CASING	SAMPI F	CORF	TURF	ELEVATION: DATUM:	+100.3
	TE.	TIME	DEPTH	CASING	TVPE	HSA	SAMILE	CORE	TUBE	START DATE:	26/Ian/22
DIX	No (Groundwa	ater Readin	Ig	DIA.	3 1/4"	1 3/8"			FINISH DATE:	26/Jan/22
				8	WGHT		140#			DRILLER:	M Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	y m							
	per		Spoon per		IDE	NTIELCAT	ION			DEMA	DVS
	Foot		<u>6''</u>		IDE	NIIFICAI	IUN			KENIA	ккэ
1		S-1	4		Brown to	opsoil with	tilled subso	<u>il</u>	1'3"	Rec = 16"	
			2		Gray SI	LT some, co		moist			
2			12		trace (+)	medium to	fine Grave	<u>l</u>	1'6"		
2		G 3	6	Rd br, cor	np weathe	red Sh	.1		201	D 201	
3		8-2	14	Pdbr mo	<u>Red bro</u>	wn complet	<u>ely weather</u> froc	ed Shale	2'9''	$\text{Rec} = 20^{\circ}$	
4			22	Ku or, mo	u weather	eu Sii, iligii	llac			monst	
5				1							
			7	Rd, br, sau	ne						
6		S-3	11		N 11					$\operatorname{Rec} = 20"$	
7			10		<u>Kea bro</u> highly fr	<u>wn modera</u> eactured	tely weather	red Shale	<u>,</u>	moist	
/			13		<u>mgmy n</u>	acturcu					
8		S-4	22							Rec = 18"	
			32	Rd br, san	ne					wet	
9			50/3"							very dense, slow a	ugering
10											
10			36								
11		S-5	50/3"	Rd br, san	ne				10'9"	$\operatorname{Rec} = 4"$	
					End of B	Boring @ 10	l'9"			wet	
12											
12				+							
15				$\left\{ \right\}$							
14											
				1							
15											
17				+							
10				$\left\{ \right\}$							
17				†							
				11					-		
18				1 I							
10				4							
19				+							
20				1							
_0				1							
21				Į							
22				4 I							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA	TES	TEST BORING LOG					BORING NUMB	ER D 11
Ducion	Sa L	preville, I	NJ 1 64 a marca a 4	CALLER DI	a a la 99.02	L .4 12 02	L .4 10 E	LIL. NIT		SHEET NO .	B-II
Projec	t :	Proposed	1 Stormwat	ter Study, Bl	ock 88.02	Lot 13.02,	Lot 19 Fran	iklin, NJ		SHEET NO.:	1 of 1
Client: Drillin	a Contre	PS&S	Fnvironm	ental Techni	cal Drillir	ng Inc				JUB NUMBER: FI EVATION:	$\frac{20-127}{+108.0}$
	g Contra NDWA'	ICIOI.				CASINC	SAMPI F	CORF	TURF	DATUM.	Topo
	RDWA. FF	TIME	ПЕРТН	CASING	TVPF	HSA	SAMI LE	CORE	TUBE	START DATE:	26/Ian/22
DA	No Gr	oundwate	er Encount	ered	DIA	3 1/4"	1 3/8"			FINISH DATE:	26/Jan/22
	no Gi	ounawatt	er Encount		WGHT	0 1/ 1	140#			DRILLER:	M Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S	8		1				
(ft.)	Blows	Number	Sample	У							
	per		Spoon per	m							
	Foot		6"		IDE	NTIFICAT	ION			REMA	RKS
1		6.1	2		D		411. J	•1	1101	D 20"	
1		8-1	2		Brown to	opsoil with	tilled subso	<u>ll</u> reata	1'0"	$\text{Rec} = 20^{\circ}$	
2			5		fine San	d little med	lium to fine	<u>Gravel</u>	10	moist	
2			8	Rd br cor	nn weathe	red Sh		Ulavei			
3		S-2	25	100 01, 001	Red bro	wn complet	elv weather	ed Shale	3'3"	$\operatorname{Rec} = 22"$	
-		~ -	36	Rd br, hig	h to mod v	weathered S	h, high fract	ure		moist	
4			50/5"								
					Red bro	wn highly t	o moderatel	y weathe	ered		
5					<u>Shale, hi</u>	ighly fractu	red				
		~ •	23							T 0.1	
6		S-3	50/3"	same						$\operatorname{Rec} = 8''$	
7				4					7'0"	moist	10" on
/				┥┝───	End of B	Poring @ 7!	0"		70	Auger refusal @ /	0 On
8				+	<u>Ena or d</u>		<u> </u>			narder weathered s	silate
0											
9				†							
				1							
10											
11				+							
12											
12											
13											
				11							
14				II							
				4							
15				4							
16				+							
10				$\frac{1}{2}$							
17											
1/				11							
18				1							
19				4 I							
-				4							
20				$\left\{ \right\}$							
21			ļ	+							
21				†							
22				<u>† </u>							

CARI	LIN-SIM	IPSON &	ASSOCIA	TES	TEST BORING LOG					BORING NUMB	ER D 12
D ·	Sa	yreville, I	NJ	C(T		L (12.02	L (10 F				B-12
Projec	t :	Proposed	1 Stormwat	er Study, E	lock 88.02	Lot 13.02,	Lot 19 Fran	iklin, NJ		SHEET NO.:	1 of 1 20,127
Chefit: Drillin	g Contre	rsas actor:	Environm	ental Techr	ical Drillir	ng Inc				JUD NUMBER: FLEVATION:	$\frac{20-127}{+110.0}$
GROU	NDWA'	TER	Linvin on ini			CASING	SAMPLE	CORE	TUBE	DATUM:	Topo
DA	ге ге	TIME	DEPTH	CASING	TYPE	HSA	SS	COLL	TODE	START DATE:	26/Jan/22
	No Gr	oundwate	er Encount	ered	DIA.	3 1/4"	1 3/8"			FINISH DATE:	26/Jan/22
			-		WGHT		140#			DRILLER:	M Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	y m							
	per		Spoon per		IDE	NTIELCAT				DEMA	DVG
	Foot		<u>6''</u>		IDE	NIIFICAI	IUN			KEMA	ккб
1		S-1	1		Brown t	opsoil with	tilled subsoi	il		$\operatorname{Rec} = 20"$	
			2					_	1'3"	moist	
2			4		Red bro	wn coarse t	o fine Sand,	and Silt			
			4		little me	dium to fin	e Gravel wit	h weathe	ered		
3		S-2	11		Shale fra	agments			2'9"	$\operatorname{Rec} = 18"$	
4			33		Red bro	wn complet	ely weather	ed	4:0"	moist	
4			30/3	Rd br. hi	<u>shinate</u> ghly to more	derately wea	thered Sh. h	ighly frac	tured		
5				1	B						
			19		Red bro	wn highly t	o moderatel	ered			
6		S-3	42	same	<u>Shale, hi</u>	ighly fractu	red		Rec - 12"		
7			50/2"					7101	moist		
/					Endoff	aning @ 71	0.11		//0**	Auger refusal @ /	"0" on
8				Ī	<u>Eng of E</u>	oring (a) /	<u>0 </u>			narder weathered s	snale
0											
9				İ I							
10											
11											
11											
12											
				I							
13											
1.4				łl							
14				† I							
15				†							
				II							
16				l I							
17											
1/											
18				†							
				İ İ							
19				Į							
-				Į Į							
20				ł							
21				† I							
21				†							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA	TES		TEST BORING LOG				BORING NUMB	ER D 12
D •	Sa	yreville, 1	NJ LG4 4	64 1	DI 1.00.0/	11 12 02	L (10 E	11. 11.			B-13
Project	t:	Proposed	l Stormwat	er Study	, Block 88.02	2 Lot 13.02,	Lot 19 Fran	iklin, NJ		SHEET NO.:	
Client:	a Contra	PS&S	Environm	antal Taa	haisal Duilli	ng Ing				JOB NUMBER:	20-127
	g Contra	ACLOF: FED	Environme	ental lec	nnicai Driin	ng, mc.	SAMDI F	CODE	TUDE	ELEVATION:	+109.0
	NDWA. FE	I E.K TIME	DEDTU	CASIN	C TVDF		SAMPLE	CORE	IUDE	DATUMI: STADT DATE.	10p0
DA	I E Cround	TINE water Fn	OLF I II	in boring		П5А 3 1///"	33 13/8"			START DATE: FINISH DATE:	20/Jall/22
31/M	(ar/22		<u>4'9"</u>	Test F	it WGHT	J 1/ 4	140#			DRILLER•	M Kane
01/10			.,	10501	FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	У							
	per		Spoon per	m							
	Foot		6"		ID	ENTIFICAT	TION			REMA	RKS
1		0.1	2		n			••		D 101	
1		S-1	2		<u>Brown</u>	topsoil with		Rec = 18''			
2			2					moist			
2			Z WOH						2'3"		
3		S-2	4	Rd br.	comp weath	ered Shale, v	v/ prt of soil		25	Rec = 18"	
5		~ -	8	110 01,	compcum			moist			
4			11		Red bro	own complet					
				\Box	weathe	red Shale wi					
5											
			7	Rd br,	same, no pri	;				D 100	
6		8-3	20							Rec = 18''	
7			35							moist	
/			50	same	highly weath	ered			7'6"		
8		S-4	25/1"	same,	mgmy weam	leieu			70	Rec = 4"	
-		~ -			End of	Boring @ 7'	6"			moist	
9				İ I						Auger refusal @ 7	'6''
				II						on harder weather	ed shale
10											
11											
11				\mathbf{H}							
12				†							
				†							
13				İ I							
14				 							
15				+							
13				$\left\{ \right\}$							
16				†							
_				†							
17				Ī							
18											
10				+							
19			ļ	$\frac{1}{2}$							
20			ļ	†							
				†							
21				II							
				 							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA	TE	S	TEST BORING LOG					BORING NUMB	ER
	Sa	yreville, I	NJ		~							B-14
Project	t :	Proposed	l Stormwat	er	Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	klin, NJ		SHEET NO.:	1 of 1
Client:	- Canta	PS&S	F	4	al Taabada	al Daville	~ 1				JOB NUMBER:	20-127
	g Contra NDWA	ACTOR:	Environm	ent	al l'echnic	ai Driilin	ig, inc.	CAMDI F	CODE	TUDE	ELEVATION:	+109.5
	NDWA. FF	I E.N. TIMF	перти	C	ASINC	TVDF	LASING	SAMFLE	CORE	IUDE	DATUMI; STADT DATE:	26/Ion/22
DA No	Ground	water En	countered i	in l	noring	DIA	3 1/4"	1 3/8"			FINISH DATE:	26/Jan/22
31/M	ar/22		5'6"		Test Pit	WGHT	01/1	140#			DRILLER:	M Kane
						FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S								
(ft.)	Blows	Number	Sample	у								
	per		Spoon per	m								
	Foot		6"			IDE	NTIFICAT	ION			REMA	RKS
1		S_1	2			Brown to	onsoil with	tillad subsai	:1		$\mathbf{Rec} = 18"$	
1		5-1	4		Brown topson with threa subson						moist	
2			. 4		Rd br, con	p weath S	Sh, w/ prt of	10	liloist			
			4		,	1	, 1					
3		S-2	18			Red brow	wn complet		Rec = 18"			
			20			with par	tings of soi		moist			
4			20									
5				ļļ				401				
5			0		Ddhr may	1 woothor	d Sh high	4.9.				
6		S-3	9 26		Ku bi, illou	Red brow	vn modera	ffacture telv weather	red Shale		Rec = 18''	
0		5-5	37			highly fr	actured	tery weather		_	moist-wet	
7			50/4"				<u></u>			7'0"	Auger refusal @ 7	'0''
				Π		End of B	oring @ 7'	0''			on weathered shale	e
8				II								
0												
9				Į ∣								
10				$\left \right $								
10				†								
11				1 i								
				1								
12												
12				Į ∣								
15				ł ∣								
14				1								
				t								
15				ļļ								
16												
17				{								
1 /				╏╏								
18				11								
				11								
19				ļļ								
20				╽╽								
21				{								
<i>∠</i> 1				† ∣								
22												

CARI	LIN-SIM	IPSON &	ASSOCIA	TES	TEST BORING LOG					BORING NUMB	ER
	Sa	yreville, I	NJ								B-15
Project	t :	Proposed	l Stormwat	er Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	klin, NJ		SHEET NO.:	1 of 1
Client:	<u> </u>	PS&S	F '			T				JOB NUMBER:	20-127
Drilling	g Contra	actor:	Environme	ental lechnic	ai Driinn	ig, inc.	CAMDIE	CODE	TUDE	ELEVATION:	+112.0
GRUU	NDWA.	IEK	DEDTH	CASING	TVDE	CASING	SAMPLE	CORE	TUBE	DAIUMI: Stadt date.	1 opo
DA 26/1	1 E an/22	11ME 1445		UASING HSA	DIA	H5A 3 1/4"	33 1 3/8"			STAKT DATE: FINISH DATE:	$\frac{26}{Jan/22}$
20/J	a11/22	1445	70	IISA	WGHT	51/4	1 3/8			DRILLER:	M Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	У							
	per		Spoon per	m							
	Foot		6"		IDE	NTIFICAT	ION			REMA	RKS
1		S_1	3		Brown to	onsoil with	tillad subsai	:1		$P_{ec} = 20"$	
1		5-1	3		DIOWII U	upson with	tilleu subsol	<u>u</u>	1'6"	moist	
2			2		Red bro	wn coarse t	2'0"	monst			
			7		some me	dium to fin					
3		S-2	17	Rd br, con	np weathe	red Sh, w/ p		Rec = 18"			
			26					moist			
4			36								
5											
5			9	Rd br sam	ne -						
6		S-3	21	itte of, san	Red broy	wn complet	elv to highly	v weathe	red	Rec = 20"	
Ũ		~ •	18		Shale wi	th parting (of soil	, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,		moist to wet	
7			24								
			8	Rd br, san	ne, highly	weathed					
8		S-4	19							$\operatorname{Rec} = 20"$	
0			32							wet	
9			30/4*								
10											
_		S-5	50/5"	Rd br, san	ne				10'5"		
11					End of B	Boring @ 10)'5''			Auger refusal @ 1	0'0"
										on weathered shale	2
12											
13			ļ	$\frac{1}{2}$							
15				†							
14				İ							
				ļ							
15				ļ							
16				ł							
10											
17											
				İ							
18				ļļ							
10				ļ							
19				ł							
20				†							
20				t I							
21]							
~~				ļļ							
22											

CARI	LIN-SIM	IPSON &	ASSOCIA	TES	TEST BORING LOG					BORING NUMB	ER
	Sa	yreville,]	NJ	~							B-16
Projec	t:	Proposed	l Stormwat	er Study, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	klin, NJ		SHEET NO.:	1 of 1
Client:	- Canta	PS&S	F			a Inc				JOB NUMBER:	20-127
Drillin	g Contra	ACTOR:	Environm	ental l'echnic	cal Drillin	ig, inc.	CAMDI F	CODE	TUDE	ELEVATION:	+115.0
	NDWA. FE	I E K TIME	ПЕРТЦ	CASINC	TVDE		SAMPLE	CORE	IUDE	DATUNI; Stadt date.	10p0
DA	IE No Gr	I IIVIE oundwate	DEPIN Pr Encount	ered	DIA	п5А 3 1/4"	55 1 3/8"			STAKT DATE: FINISH DATE:	27/Jan/22
		ounawatt			WGHT	51/4	140#			DRILLER:	M Kane
					FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S							
(ft.)	Blows	Number	Sample	У							
	per		Spoon per	m							
	Foot		6"		IDE	NTIFICAT	ION			REMA	RKS
1		S_1	4 5		Brown t	onsoil with	tillad subsat	:1		$R_{ec} = 3"$	
1		5-1	10		DIOWILU	upson with	1'3"	moist			
2			18	Rd br, con	np weathe	red Shale			10	gravel in tip	
			13		Red bro	wn complet	ely weather	ed Shale		C 1	
3		S-2	21	same					3'0"	Rec = 18"	
			24	Rd br, mo	d weath S	h, high fract		moist			
4			31		D. J.I.						
5					<u>Kea bro</u>	wn modera Pactured	tely weather	red Shale	<u>,</u>		
5			15		<u>mgmy n</u>						
6		S-3	27	Rd br, san	ne					$\operatorname{Rec} = 22"$	
			23							moist	
7			26								
		~ .	18								
8		S-4	38	same						$\operatorname{Rec} = 18"$	
0			49 50/5"						0'0"	Moist	'O''
,			50/5		End of B	Boring @ 9'	0''		90	on completely wea	thered
10										shale	
11											
12											
12											
13											
14											
1.5											
15				H I							
16				†							
10				†							
17											
10											
18				$\left\{ \right\}$							
10			ļ	\mathbf{H}							
19			ļ								
20				İ İ							
				II							
21				l I							
22				$\left\{ \right\}$							
LL				1							

CARI	LIN-SIM	PSON &		BORING NUMB	ER							
	Sa	yreville,]	NJ									B-17
Project	t :	Proposed	l Stormwat	er Stud	y, Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	klin, NJ		SHEET NO.:	1 of 1
Client:	<u> </u>	PS&S	F •	. 1.77		1.5.111					JOB NUMBER:	20-127
Drilling	g Contra	ictor:	Environm	ental le	chnie	cal Drillin	ig, Inc.	CAMDLE	CODE	TUDE	ELEVATION:	+119.5
GRUU	NDWA I	TIME	DEDTH	CACI		TVDE	CASING	SAMPLE	CORE	TUBE		
DA 27/1	1E	1045	DEPTH 11'0"		NG SA	DIA	H5A 3 1/4"	55 1 3/8"			SIAKI DAIE: Finish date:	2//Jan/22
21/J	a11/22	1045	110	11.	D A	WGHT	51/4	1 3/8			DRILLER•	M Kane
						FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S								
(ft.)	Blows	Number	Sample	У								
, ,	per		Spoon per	m								
	Foot		6"			IDE	NTIFICAT		REMA	RKS		
1			5			D		1101				
1		S_1	4	Gr \$	s (+)	$\frac{\text{Brown to}}{\text{cf S} 1(+)}$) mf G	1.0.	$\mathbf{Rec} = 18"$			
2		5-1	5 6	OI \$	s('),	CI 5, I (†) III O		moist			
-			4						litoist			
3		S-2	6	same	, Gr,	dk br					Rec = 18"	
			10			Gray SI	LT some (+), coarse to	<u>I,</u>	moist		
4			14			<u>little (+)</u>	<u>medium to</u>					
-								- 101				
5			7							5'0"		
6		S_3	/	Dk a	r of S	s (+) \$ a	() mf G w	venthered she	مام		$\mathbf{Rec} = 18"$	
0		5-5	13	DK g		, 5 (+) 5, 8	ι (-) III Ο, ν		110		moist	
7			23								monst	
			14									
8		S-4	20	same	, s mi	fG					$\operatorname{Rec} = 20"$	
			25								moist	
9			27			Dark gra	ay coarse to	<u>fine Sand,</u>	C"			
10						<u>some (+)</u>	<u>Silt, and (-</u>	<u>) meatum to</u> Shala	<u>o fine</u>			
10			10			Glavel,		Shale				
11		S-5	11	same	, rd b	r weathere	ed shale, w/s	seams of soil			Rec = 20"	
			14								moist to wet	
12			20									
10												
13			20								Auger refusal @ 1	3'0"
14		S-6	38 44	same	rd b	r complet	elv to highl	v weathered	shale		Rec = 18"	
14		5-0	47	Sume	, 14 0	i, compie	ery to mgm	, meanered	Shul		wet	
15			50/3"							<u>14'9"</u>		
						End of B	Boring @ 14	!'9''				
16												
17												
1/												
18			ļ									
				†								
19				I								
20												
21				$\left \right $								
Δ1			L									
22												

CARI	LIN-SIM	IPSON &	ASSOCIA	TES		TEST BORING LOG					BORING NUMBER		
	Sa	yreville, I	NJ									B-18	
Projec	t:	Proposed	l Stormwat	er Study	Blo	ock 88.02	Lot 13.02,	Lot 19 Fran	iklin, NJ		SHEET NO.:	1 of 1	
Client:	- Canta	PS&S	F		h		~ 1				JOB NUMBER:	20-127	
		ICLOF: FFD	Environme	ental lec	nnic	ai Driiin	ig, mc.	SAMDI F	CODE	THDE	ELEVATION:	+111.0 Tana	
	NDWA. FF	I EK TIMF	перти	CASIN	7	TVDF	LASING	SAMPLE	CORE	IUDE	DATUM: STADT DATE:	10p0	
DA No	Ground	water En	countered i	in Boring	J	DIA	3 1/4"	1 3/8"			FINISH DATE:	27/Jan/22	
31/M	ar/22		3'9"	Test P	it	WGHT	51/4	140#			DRILLER:	M Kane	
• 1, 11			• •	10001		FALL		30"			INSPECTOR:	MW	
Depth	Casing	Sample	Blows on	S									
(ft.)	Blows	Number	Sample	У									
	per		Spoon per	т									
	Foot		6"			IDE	NTIFICAT		REMA	RKS			
1		S_1	4			Brown to	onsoil with	1'0"	$R_{ec} = 12''$				
1		5-1	9			Red brow	n coarse to f	1'6"	moist				
2			19			Silt, little	medium to f	10					
			10			with weat	hered Shale	fragments					
3		S-2	19			Red brow	n completely	weathered S	Shale_	3'0"	$\operatorname{Rec} = 22"$		
			29	Rd br,	higl	nly to mod	lerately wea	thered Shale	e, highly		moist-wet		
4			40	fractu	ed						spoon walking		
5				$\left \right $									
5			7										
6		S-3	20	same	dk ø	r					Rec = 22''		
0		50	20	sume,	un e	Red brov	wn, dark gi	av highly to	o modera	telv	moist		
7			27			weather	ed Shale, hi	ghly fractu	red	<u> </u>			
			32										
8		S-4	36	same,	dk g	r, weather	red shale				$\operatorname{Rec} = 20"$		
			38								moist		
9			42								very dense, very s	ow	
10				$\left\{ \right\}$							augernig		
10			9										
11		S-5	18	same,	dk g	r weather	ed shale				Rec = 18"		
			25								moist		
12			50/2"	.						11'8"	spoon refusal @ 1	1'8"	
12				$\left \right $		End of B	oring (a) 11	.'8''					
13				$\left\{ \right\}$									
14				\mathbf{H}									
				†									
15				İ I									
				11									
16													
17				$\left\{ \right\}$									
1 /				\mathbf{H}									
18				†									
				t I									
19				II									
20			ļ	+									
21				ł I									
21			ļ	†									
22				<u>t I</u>									

Sayreville, NJ Sayreville, NJ Stream Project: Proposed Stormwater Study, Block 88.02 Lot 13.02, Lot 19 Franklin, NJ SHEET NO Client: PS&S JOB NUM Drilling Contractor: Environmental Technical Drilling, Inc. ELEVATION GROUNDWATER CASING SAMPLE CORE TUBE DATUM: DATE TIME DEPTH CASING TYPE HSA SS START DA 27/Jan/22 1330 7'6" HSA DIA. 3 1/4" 1 3/8" FINISH DA	B-19 D: 1 of 1 BER: 20-127 DN: +113.0 Topo TE: 27/Jan/2 M Kane PR: MW		
Project: Proposed Stormwater Study, Block 88.02 Lot 13.02, Lot 19 Franklin, NJ SHEET NO Client: PS&S JOB NUM Drilling Contractor: Environmental Technical Drilling, Inc. ELEVATIO GROUNDWATER CASING SAMPLE CORE TUBE DATUM: DATE TIME DEPTH CASING TYPE HSA SS START DA 27/Jan/22 1330 7'6" HSA DIA. 3 1/4" 1 3/8" FINISH DA	1 of 1 BER: 20-127 DN: +113.0 Topo Te: 27/Jan/2 M Kane DR: MW		
Client: PS&S JOB NUM Drilling Contractor: Environmental Technical Drilling, Inc. ELEVATION GROUNDWATER CASING SAMPLE CORE TUBE DATUM: DATE TIME DEPTH CASING TYPE HSA SS START DA 27/Jan/22 1330 7'6" HSA DIA. 3 1/4" 1 3/8" FINISH DA	BER: 20-127 DN: +113.0 Topo Topo TE: 27/Jan/2 TE: 27/Jan/2 M Kane DR:		
Drilling Contractor: Environmental Technical Drilling, Inc. ELEVATION GROUNDWATER CASING SAMPLE CORE TUBE DATUM: DATE TIME DEPTH CASING TYPE HSA SS START DA 27/Jan/22 1330 7'6" HSA DIA. 3 1/4" 1 3/8" FINISH DA	JN: +113.0 Topo Topo TE: 27/Jan/2 TE: 27/Jan/2 M Kane MW	/	
DATETIMEDEPTHCASINGTYPEHSASSSTART DA27/Jan/2213307'6"HSADIA.3 1/4"1 3/8"FINISH DA	TE: 27/Jan/2 TE: 27/Jan/2 M Kane R: MW)	
DATE INIE DEPTH CASING I YPE HSA SS START DA 27/Jan/22 1330 7'6" HSA DIA. 3 1/4" 1 3/8" FINISH DA	TE: 27/Jan/2 ATE: 27/Jan/2 M Kane PR: MW	12	
	M Kane	2	
WGHT 140# DRILLER	R: MW	. <u>∠</u>	
FALL 30" INSPECTO			
Depth Casing Sample Blows on S			
(ft.) Blows Number Sample ^y			
per Spoon per ^m			
Foot 6" IDENTIFICATION F	EMARKS		
1 S 1 2 Drown tongoil with tilled subsoil $2 = 18''$			
$\frac{1}{1} \qquad \frac{1}$			
2 7 Brown Clayey SILT some (-), coarse 1'8"			
7 <u>to fine Sand, little me</u> dium to fine Gravel			
3 S-2 10 $2'9'' \operatorname{Rec} = 18''$			
11 Red Brown completely weathered Shale moist			
4 15 with many soil partings Trapped/Pe	ched water		
at $4'0''$			
S Rd br cf S, s (-) \$, s mf G, completely weathered shale			
6 S-3 18 Red brown completely to highly weathered $\text{Rec} = 22''$			
22 Shale, highly fractured.			
$\frac{2}{50/3"} \text{ same}$			
Auger refus	Auger refusal @ 8'0" on		
8 harder weat	nered shale		
S-4 $50/4"$ same $8'4"$ Rec = 3"			
9 <u>End of Boring (a) 8'4"</u> spoon wet			
10			
12			
15			
18			
19			
22			

CARI	LIN-SIM	IPSON &	ASSOCIA	TES			TEST BOI	RING LOG			BORING NUMB	ER
	Sa	yreville, I	NJ									B-20
Projec	t:	Proposed	l Stormwat	er Stu	dy, Blo	ck 88.02	Lot 13.02,	Lot 19 Fran	klin, NJ		SHEET NO.:	1 of 1
Client:	C (PS&S	F •	4 1 7	<u> </u>		T				JOB NUMBER:	20-127
Drillin	g Contra	actor:	Environm	ental I	echnic	al Drillin	ig, Inc.	CAMDIE	CODE	TUDE	ELEVATION:	+114.0
	NDWA.	I E K TIME	DEDTH	CAS	INC	TVDE		SAMPLE	CORE	TUBE	DAIUM: Stadt date.	1 opo
DA	IE No Gr	I IIVIE oundwate	DEPIN Pr Encount	CA5. ered	ING	DIA	п5А 3 1/4"	55 1 3/8"			STAKT DATE: FINISH DATE:	27/Jan/22
	110 01	oundwatt				WGHT	51/4	140#			DRILLER:	M Kane
						FALL		30"			INSPECTOR:	MW
Depth	Casing	Sample	Blows on	S								
(ft.)	Blows	Number	Sample	У								
	per		Spoon per	m								
	Foot		6"			IDE	NTIFICAT	ION			REMA	RKS
1		S-1	2			Brown to	onsoil with		Rec = 20"			
1		51	2			DIOWN C			moist			
2			5					1'9"				
			4									
3		S-2	7	Rd	br \$ l (-), cf S, t ((-) f G				$\operatorname{Rec} = 18"$	
			13			Red brov	wn SILT lit		moist			
4			18			Sand, tra	ace (-) fine	116"				
5				┥				40				
5			7									
6		S-3	14	Rd	br cf S,	s (+) \$, s	(-) mf G				$\operatorname{Rec} = 18"$	
			17			Red broy	wn coarse t	o fine Sand,	L		moist to wet	
7			20			<u>some (+)</u>	Silt, some	(-) medium (<u>to fine</u>			
Q		S /	15	som	1 0 00 m	<u>Gravel, (</u>	completely pothered sho	weathered S	<u>Shale</u>		$P_{eq} = 12"$	
0		3-4	29 50/3"	Sall	ie, com	pietery we	eathered sha	lie			rec = 12 moist to wet	
9			0010							9'0"	Auger refusal @ 9	'0" on
						End of B	Boring @ 9'	<u>0''</u>			completely weathe	red shale
10				 								
11				Į Į								
11				+								
12				1								
				I								
13				 								
1 /				Η I								
14				$\left\{ \right\}$								
15				†								
]								
16				 								
17				Į								
1/				$\{ \ \}$								
18				†								
				11								
19				 								
20				$\left \right $								
20				ł								
21				†								
				[
22												

CARLIN-SIMPSON & ASSOCIATES, LLC

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 31 January 2022

TP-1 (Elev. +113.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 2'6"	Red brown coarse to fine Sand, and (+) Silt, some (-) medium to fine Gravel, with weathered Shale fragments	medium dense, moist
2'6" - 4'0"	Red brown completely to highly weathered Shale	rippable
	Groundwater Encountered @ 3'3" (very slow inflow) Bucket refusal @ 4'0" on highly weathered Shale	

TP-2 (Elev. +115.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 4'6"	Red brown SILT some, coarse to fine Sand, trace (+) fine Gravel	medium stiff, moist
4'6" - 5'6"	Red brown coarse to fine Sand, some (+) Silt, some (+) medium to fine Gravel, with weathered Shale fragments	very dense, moist
5'6' - 6'0"	Red brown completely to highly weathered Shale	rippable, moist
	No Groundwater Encountered	

CARLIN-SIMPSON & ASSOCIATES, LLC

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 31 January 2022

TP-3 (Elev. +114.5)

0'0" - 1'6"	Topsoil with tilled subsoil	
1'6" - 5'6'	Red brown SILT some (+), coarse to fine Sand, trace medium to fine Gravel	medium stiff, moist
5'6" - 6'6"	Red brown completely weathered Shale, with partings of soil	rippable, moist
	No Groundwater Encountered	

TP-4 (Elev. +112.0)

0'0" - 1'6"	Topsoil with tilled subsoil	
1'6" - 6'0"	Red brown SILT and (+), coarse to fine Sand, little (-) medium to fine Gravel	medium stiff, moist
6'0" - 6'9"	Red brown completely weathered Shale	rippable, moist
	No Groundwater Encountered	
Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 31 January 2022

TP-5 (Elev. 111.5)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 5'6"	Red brown coarse to fine Sand, some (+) Silt, some (+) coarse to fine Gravel, with many weathered Shale fragments	medium dense, moist
5'6" - 6'3"	Red brown completely weathered Shale	rippable, moist
	Bucket refusal @ 6'3" on weathered Shale No Groundwater Encountered	

TP-6 (Elev. +109.0)

0'0" - 1'4"	Topsoil with tilled subsoil	
1'4" - 3'0"	Red brown completely weathered Shale, with many soil seams	very dense, moist
3'0" - 5'6"	Red brown highly weathered Shale	rippable, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 23 March 2022

TP-7 (Elev. +119.0)

0'0" - 0'8" Topsoil

0'8" - 4'0"	FILL (Dark red brown, black coarse to fine SAND, some (-) Silt, some (-) medium to fine Gravel,	
	with a lot of debris, glass, brick)	loose, moist
4'0" - 5'0"	Red brown coarse to fine SAND, trace Silt, little medium to fine Gravel	medium dense, moist
5'0" - 7'3"	Red brown coarse to fine Sand, and Silt, and coarse to fine Gravel, with weathered rock fragments	dense, moist
7'3" - 9'0"	Red brown completely weathered Shale with seams of Silt	rippable, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 23 March 2022

TP-8 (Elev. +117.0)

0'0" - 0'4"	Topsoil	
0'4" - 1'0"	FILL (Dark brown, gray coarse to fine SAND, little (+) Silt, some (-) medium to fine Gravel)	loose, moist
1'0" - 4'0"	Red brown coarse to fine SAND, some Silt, some (-) medium to fine Gravel	medium dense, moist
4'0" - 6'6"	Red brown coarse to fine SAND, trace Silt, little medium to fine Gravel	medium dense, moist to wet
6'6" - 8'0"	Red brown SILT and (-), coarse to fine Sand, little coarse to fine Gravel, with weathered Shale fragments	medium stiff
8'0" - 8'9"	Red brown completely weathered Shale	dense, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

23 March 2022

TP-9 (Elev. +115.0)

0'0" - 1'0"	Topsoil	
1'0" - 2'6"	Red brown, brown coarse to fine SAND, trace Silt, little medium to fine Gravel	loose, moist
2'6" - 5'0"	Brown SILT some (+), coarse to fine Sand, trace (+) medium to fine Gravel, with seams of coarse to fine Sand, some Silt	medium stiff, moist
5'0" - 7'0"	Red brown Clayey SILT some (-), coarse to fine Sand, trace (-) fine Gravel	medium stiff, moist
7'0" - 8'9"	Red brown completely weathered Shale	rippable, moist
	No Groundwater Encountered	

TP-10 (Elev. +113.0)

0'0" - 2'6"	Topsoil	
2'6" - 6'9"	Red brown, brown coarse to fine Sand, and Silt, little (-) medium to fine Gravel	medium dense, moist
6'9" - 8'9"	Red brown completely weathered Shale with seams of Silt	rippable, moist to wet
	Groundwater Encountered @ 7'6"	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 23 March 2022

TP-11 (Elev. +112.5)

0'0" - 0'3"	Topsoil	
0'3" - 3'9"	Red brown Clayey SILT some (-), coarse to fine Sand, trace (-) fine Gravel	stiff, moist
3'9" - 6'3"	Red brown coarse to fine SAND, and (+) Silt, some (-) coarse to fine Gravel, with weathered Shale fragments	dense, moist
6'3" - 9'0"	Red brown completely weathered Shale	rippable, moist
	Groundwater Encountered @ 7'9"	
<u>TP-12 (Elev. +</u>	<u>111.5)</u>	
0'0" - 1'6"	Topsoil with tilled subsoil	

1'6" - 4'6"	Red brown Clayey SILT little, coarse to fine Sand, trace (-) fine Gravel	medium stiff, moist
4'6" - 5'3"	Red brown SILT and (+), coarse to fine Sand, little (+) coarse to fine Gravel	medium stiff, moist
5'3" - 7'0"	Red brown Shale highly to completely weathered	rippable, moist
7'0"	Red brown Shale	unrippable
	Groundwater Encountered @ 6'3" Bucket Refusal @ 7'0" on Harder Shale	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 23 March 2022

TP-13 (Elev. +108.0)

0'0" - 1'3"	Topsoil	
1'3" - 6'0"	Red brown SILT and (+), coarse to fine Sand, trace (+) medium to fine Gravel	stiff, moist-wet
6'0'' - 8'0''	Red brown completely weathered Shale, with partings of soil	rippable, wet
	Groundwater Encountered @ 4'3"	
<u>TP-14 (Elev.</u>	+107.0)	
0'0" - 1'6"	Topsoil with tilled subsoil	
1'6" - 2'3"	Mottled light gray, red brown, orange brown coarse to fine Sand, and Silt, little medium to fine Gravel	dense, moist
2'3" - 6'0"	Red brown highly weathered Shale, highly fractured	rippable, moist to wet
	Groundwater Encountered @ 3'9" Seasonal High Groundwater @ 1'6"	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 23 March 2022

TP-15 (Elev. +109.5)

0'0" - 1'6"	Topsoil with tilled subsoil	
1'6" - 6'3"	Gray completely weathered Shale with seams of soil	rippable, moist to wet
6'3" - 8'9"	Red brown highly weathered Shale, highly fractured	rippable, wet
	Groundwater Encountered @ 5'6"	
<u>TP-16 (Elev. +</u>	<u>111.5)</u>	
0'0'' - 1'0''	Topsoil with tilled subsoil	
1'0" - 2'3"	Red brown SILT some (+), coarse to fine Sand, trace medium to fine Gravel	medium stiff, moist
2'3" - 3'9"	Red brown coarse to fine SAND, little (+) Silt, some medium to fine Gravel	medium dense, moist
3'9" - 6'6"	Red brown coarse to fine Sand, and Silt, some coarse to fine Gravel, with weathered rock fragments	dense, moist
6'6'' - 7'6''	Red brown completely weathered Shale	rippable

Groundwater Encountered @ 6'6"

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 23 March 2022

TP-17 (Elev. +109.5)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 2'9"	Red brown coarse to fine Sand, some (-) Silt, some (+) medium to fine Gravel	medium dense, moist
2'9" - 6'9"	Red brown coarse to fine Sand, and Silt, and (-) medium to fine Gravel, with weathered Shale fragments	dense, moist
6'9" - 8'0"	Red brown completely to highly weathered Shale, highly Fractured	rippable, wet
	Groundwater Encountered @ 5'0"	

TP-18 (Elev. +106.5)

0'0'' - 1'0''	Topsoil with tilled subsoil	
1'0" - 3'6"	Red brown completely weathered Shale with seams of soil	rippable, moist
3'6" - 6'0"	Red brown highly weathered Shale, highly fractured	rippable, moist to wet
6'0"	Red brown Shale	unrippable, wet
	Groundwater Encountered @ 3'0" Bucket refusal @ 6'0" on Harder Shale	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 25 March 2022

TP-19 (Elev. +102.5)

0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 3'9"	Red brown highly weathered Shale, highly fractured	rippable, moist
3'9"	Red brown Shale	unrippable, moist
	Bucket Refusal @ 3'9" on Harder Shale Groundwater Encountered @ 3'0" (very slow inflow)	
<u>TP-20 (Elev</u>	+102.5)	
0'0" - 0'10"	Topsoil with tilled subsoil	
0'10" - 1'3"	Mottled light gray, orange brown, red brown SILT some (-), medium to fine Sand	medium stiff, moist
1'3" - 3'0"	Red brown coarse to fine Sand, and (+) Silt, and coarse to fine Gravel, with many weathered Shale fragments	dense, moist to wet
3'0" - 5'6"	Red brown highly to completely weathered Shale	rippable, wet
	Groundwater Encountered @ 1'6" (slow inflow) Seasonal High Groundwater @ 1'3"	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 25 March 2022

TP-21 (Elev. +104.5)

0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 3'9"	Red brown coarse to fine Sand, and (+) Silt, little (+) medium to fine Gravel, with weathered Shale fragments	medium dense, moist to wet
3'9" - 5'6"	Red brown highly weathered Shale, highly fractured	rippable, moist to wet
	Groundwater Encountered @ 3'6"	

TP-22 (Elev. +103.0)

0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 3'3"	Mottled light gray, orange brown, red brown, Clayey SILT some (-), coarse to fine Sand	medium stiff, moist
3'3" - 4'9"	Red brown SILT and, coarse to fine Sand, trace fine Gravel	stiff, moist
4'9" - 5'9"	Red brown completely to highly weathered Shale	rippable, moist
	Groundwater Encountered @ 3'0" (very slow inflow) Seasonal High Groundwater @ 1'0"	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

25	March	2022

TP-23 (Elev. +104.5)

2'0" - 4'9"

0'0" - 0'10"	Topsoil with tilled subsoil	
0'10" - 1'3"	Mottled light gray, orange brown, red brown Clayey SILT some, coarse to fine Sand, trace (-) fine Gravel	medium stiff, moist
1'3" - 4'3"	Red brown slightly weathered Shale, highly fractured	rippable, moist to wet
	Groundwater Encountered @ 2'9" (very slow inflow) Seasonal High Groundwater @ 1'3"	
<u>TP-24 (Elev. +</u>	<u>106.0)</u>	
0'0" - 0'8"	Topsoil	
0'8" - 1'3"	Mottled light gray, orange brown SILT some (+), coarse to fine Sand	medium stiff, moist
1'3" - 2'0"	Red brown SILT some, coarse to fine Sand, little medium to fine Gravel	medium stiff moist

rippable

Groundwater Encountered @ 2'9" (slow inflow) Seasonal High Groundwater @ 0'8"

Red brown Shale, moderately weathered, fractured

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 25 March 2022

TP-25 (Elev. +110.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 2'3"	Red brown coarse to fine Sand and (+) Silt, trace (+) medium to fine Gravel	medium dense, moist
2'3" - 3'3"	Red brown coarse to fine Sand, some Silt, and coarse to fine Gravel, with many weathered rock fragments	dense, moist
3'3'' - 7'0''	Red brown highly weathered Shale, highly fractured	rippable, moist-wet
	Groundwater Encountered @ 5'3" slow inflow	
TP-26 (Elev. 1	11.0)	

0'0" - 1'3" Topsoil with tilled subsoil 1'3" - 5'0" Red brown moderately weathered Shale, highly fractured rippable, moist Groundwater Encountered @ 3'9"

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 25 March 2022

TP-27 (Elev. +110.5)

0'0'' - 1'6''	Topsoil with tilled subsoil	
1'6" - 2'3"	Red brown completely weathered Shale	rippable, moist
2'3" - 5'0"	Red brown moderately weathered Shale, highly fractured	rippable, moist-wet
	Groundwater Encountered @ 3'3" (slow inflow)	
<u>TP-28 (Elev</u>	+114.0)	
0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 2'0"	Red brown SILT some (+), coarse to fine Sand, trace (+) fine Gravel	medium stiff, moist
2'0" - 4'6"	Red brown moderately weathered, highly fractured	rippable, moist
	Bucket Refusal @ 4'6" on Harder Shale No Groundwater Encountered	
<u>TP-29 (Elev</u>	+120.5)	
0'0" - 0'8"	Topsoil	
0'8" - 2'6"	FILL (Dark gray, coarse to fine SAND, some Silt, little medium to fine Gravel, with trace debris)	loose, moist
2'6" - 6'0"	Light gray SILT little (+), coarse to fine Sand	medium stiff, moist
6'0" - 8'6"	Red brown moderately weathered Shale, highly fractured	rippable, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

25 March	2022

TP-30 (Elev. +122.0)

0'0" - 0'4"	Topsoil	
0'4" - 3'0"	FILL (Red brown Clayey SILT some (+), coarse to fine Sand, little (-) medium to fine Gravel)	loose, moist
3'0" - 3'9"	Red brown Clayey SILT some (+), coarse to fine Sand	medium stiff, moist
3'9" - 8'0"	Red brown completely weathered Shale	rippable, moist
	Perched/trapped water @ 3'0" No Groundwater Encountered	
TP-31 (Elev. +	111.0)	

0'0" - 1'0" Topsoil

1'0" - 2'0"	Red brown SILT some (+), coarse to fine Sand, little (-) medium to fine Gravel	medium stiff, moist
2'0" - 5'6"	Red brown moderately weathered Shale, highly fractured	rippable, moist
	Groundwater Encountered @ 4'3" (slow inflow)	

TP-32 (Elev. +110.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 1'8"	Light gray coarse to fine Sand, and (+) Silt, little (+) medium to fine Gravel	medium dense, moist
1'8" - 6'0"	Red brown completely weathered Shale	rippable, moist

Consulting Engineers Geotechnical & Environmental

Groundwater Encountered @ 5'0" (slow inflow)

Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

25 March 2022

TP-33 (Elev. +107.0)

0'0" - 1'0"	Topsoil	
1'0" - 2'3"	Red brown completely weathered Shale	rippable, moist
2'3" - 4'0"	Red brown slightly weathered Shale, highly fractured	rippable, moist
	Perched groundwater encountered @ 2'0" No Groundwater Encountered	
<u>TP-34 (Elev. +</u>	<u>105.5)</u>	
0'0" - 0'10"	Topsoil	
0'10" - 1'9"	Brown Clayey SILT some (-), coarse to fine Sand	medium stiff, moist
1'9" - 4'0"	Red brown coarse to fine SAND, little (+) Silt, little (+) medium to fine Gravel	medium dense, moist to wet
4'0" - 5'0"	Red brown completely weathered Shale	rippable, wet

Groundwater Encountered @ 2'0"

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 25 March 2022

TP-35 (Elev. +116.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 4'3"	Brown coarse to fine SAND, little (+) Silt, little (+) medium to fine Gravel	medium dense, moist
4'3" - 5'3"	Yellow brown coarse to fine Sand, and Silt, some (-) medium to fine Gravel, with weathered rock fragments	medium dense, moist
5'3" - 9'0"	Red brown coarse to fine Sand, some Silt, some (+) coarse to fine Gravel, with layers of weathered Shale	dense, moist
	No Groundwater Encountered	

TP-36 (Elev. +118.0)

0'0'' - 0'8''	Topsoil	
0'8" - 2'0"	Red brown Clayey SILT some (+), coarse to fine Sand	medium stiff, moist
2'0" - 2'9"	Red brown coarse to fine Sand, and (+) Silt, little (-) medium to fine Gravel	medium dense, moist
2'9" - 5'6"	Red brown coarse to fine SAND, some Silt, little medium to fine Gravel	medium dense, moist
5'6" - 7'9"	Mottled light gray, yellow brown, orange brown SILT some, coarse to fine Sand, trace (-) fine Gravel	medium stiff, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127 25 March 2022 TP-37 (Elev. +146.0) 0'0" - 0'1" Surface vegetation 0'1" - 9'0" FILL (Red brown SILT some, coarse to fine Sand, little (+) medium to fine Gravel, with concrete, boulder) loose, moist-wet very wet 5'-9' Test Pit for existing onsite stockpile **TP-38 (Elev. +135.0)** 0'0" - 0'1" Surface vegetation 0'1" - 9'0" FILL (Red brown coarse to fine Sand, and (-) Silt, some medium to fine Gravel, with one concrete boulder and couple pieces of plastic) loose, moist-wet Test Pit for existing onsite stockpile **TP-39 (Elev. +108.5)** 0'0" - 1'6" Topsoil with tilled subsoil 1'6" - 2'0" Red brown completely weathered Shale, with seams of soil rippable, moist 2'0" - 4'6" Red Brown highly weathered Shale, highly fractured rippable, moist Groundwater Encountered @ 3'3" (slow inflow)

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 29 March 2022

TP-40 (Elev. +110.0)

0'0" - 1'4"	Topsoil with tilled subsoil	
1'4" - 3'0"	Red brown completely weathered Shale	rippable, moist
3'0" - 5'6"	Red brown highly weathered Shale, highly fractured	rippable, moist-wet
	Groundwater Encountered @ 5'6"	
<u>TP-41 (Elev</u>	<u>+106.0)</u>	
0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 1'6"	Mottled light gray, red brown SILT and (-), coarse to fine Sand	medium stiff, moist
1'6" - 3'0"	Red brown completely weathered Shale	rippable, moist to wet
3'0" - 5'9"	Red brown highly weathered Shale, highly fractured, with layer of soil	rippable, wet
	Groundwater Encountered @ 4'6" (slow inflow) Seasonal High Groundwater @ 1'0"	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 29 March 2022

TP-42 (Elev. +108.0)

0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 3'3"	Red brown coarse to fine Sand, and (-) Silt, some (+) coarse to fine Gravel, with weathered Shale fragments	medium dense, moist
3'3" - 4'3"	Red brown completely weathered Shale	rippable, moist
4'3" - 5'6"	Red brown highly weathered, highly fractured Shale	rippable, moist-wet
	Groundwater Encountered @ 4'0" (slow inflow)	
<u>TP-43 (Elev. +</u>	<u>109.5)</u>	

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 4'9"	Red brown completely weathered Shale with partings of soil	rippable, moist
4'9" - 6'0"	Red brown moderately weathered Shale, highly fractured	rippable, moist-wet
	Groundwater Encountered @ 5'6" (slow inflow)	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 29 March 2022

TP-44 (Elev. +112.0)

0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 2'0"	Red brown coarse to fine Sand, and Silt, some (-) medium to fine Gravel, with weathered Shale fragments	medium dense, moist
2'0" - 7'6"	Red brown completely weathered Shale with partings of soil	rippable, moist
	No Groundwater Encountered	

TP-45 (Elev. +113.5)

0'0" - 1'0"	Topsoil with tilled subsoil	
1'0" - 2'0"	Red brown SILT some (+), coarse to fine Sand	medium stiff, moist
2'0" - 3'3"	Red brown coarse to fine Sand and (+) Silt, little (+) medium to fine Gravel, with weathered rock fragments	medium dense, moist
3'3" - 4'3"	Red brown completely weathered Shale	rippable, moist
4'3" - 6'0"	Red brown highly weathered Shale, highly fractured	rippable, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 31 March 2022

TP-46 (Elev. +113.0)

- 0'0" 1'0" Topsoil
- 1'0" 4'0"Red brown completely weathered Shalerippable, moist

No Groundwater Encountered

TP-47 (Elev. +119.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 1'8"	Red brown coarse to fine Sand, and Silt, little medium to fine Gravel with weathered Shale fragments	medium dense, moist
1'8" - 3'9"	Red brown completely weathered Shale	rippable, moist
3'9" - 5'9"	Dark gray Clayey SILT some (-), coarse to fine Sand, little (-) fine Gravel	medium stiff, moist
5'9" - 6'3"	Dark gray completely weathered Shale	rippable, moist
	No Groundwater Encountered	

Consulting Engineers Geotechnical & Environmental

> Proposed Warehouses Block 88.02, Lot 13.02 & 19 Franklin, NJ 20-127

> > 31 March 2022

TP-48 (Elev. +114.0)

0'0" - 0'10"	Topsoil with tilled subsoil	
0'10" - 1'3"	Red brown coarse to fine Sand, and (-) Silt, some (-) medium to fine Gravel with many weathered Shale fragments	medium dense, moist
1'3" - 3'6"	Red brown completely weathered Shale, with partings of soil	rippable, moist
3'6" - 5'0"	Red brown Clayey SILT and, coarse to fine Sand, some (-) medium to fine Gravel with many weathered Shale fragments	medium stiff, moist
5'0" - 5'6"	Red brown completely weathered Shale	rippable, moist
	Groundwater encountered @ 4'9"	

TP-49 (Elev. +115.0)

0'0" - 1'3"	Topsoil with tilled subsoil	
1'3" - 2'3"	Red brown completely weathered Shale	rippable, moist
2'3" - 4'3"	Red brown highly to moderately weathered Shale, highly fractured	rippable, moist
4'3"	Red brown Shale	unrippable, moist
	Perched Groundwater Encountered @ 4'0" Bucket Refusal @ 4'3" on Harder Shale Bedrock	

APPENDIX D – STORMWATER MANAGEMENT REPORT (TO BE ATTACHED)