

Capacity of Circular Pipe Flowing 1/2 Full Project: Odin Pharmaceuticals Computed By: DG

Project: Odin Pharmaceuticals Job #: 2137-99-001 Location: Franklin Township, NJ Computed By: DG Checked By: MB Date: 12/5/2022

0.012 *Varies with Manufacturer

PIPE DESCRIPTION	SLOPE (%)	SIZE (IN)	MANNING'S COEFFICIENT (n)	VELOCITY (FT/S)	CAPACITY (CFS)	CAPACITY (GPD)	CAPACITY (MGD)
6" PVC North	5.60	6.00	0.01	8.81	0.87	559,327	0.56
6" PVC South	1.48	6.00	0.01	4.53	0.44	287,543	0.29

n(RCP)=

n(DIP)=

n(PVC)=

n(CMP)=

n(HDPE-Smooth Interior)=

Typical Values for Manning's Coefficient (n)

0.013

0.013

0.010

0.024

Variables Defined

variables Defined
Q=Capacity of Pipe (CFS)
V=Velocity in Pipe Section (FT/S)
R=Hydraulic Radius of Pipe Section
S=Slope of Pipe Section (FT/FT)
D=Diameter of Pipe (FT)
d=Depth of Flow in Pipe (FT)
n=Manning's Coefficient
Wp=Wetted Perimeter (FT)

Equations used: Q=VA V=(1.49/n)*R^(2/3)*S^(1/2) Q=(1.49/n)*R^(2/3)*S^(1/2)*A

Utilizing Appendix 16.A from the Civil Engineering Reference Manual-Seventh Edition, by Micheal Lindeburg, Copyright 1999 The following equations were utilized to calculate the Hydraulic Radius and Area of a Circular Pipe Section flowing 1/2 full A=(π*D^2/4)*0.5=0.3927*D^2 R=A/Wp=0.3927*D^2/((2*π*D/2)*0.5)=0.25*D

 $\label{eq:constraint} \begin{array}{l} \mbox{Therefore:} \\ \mbox{Q=(1.49/n)*(0.25*D)^{(2/3)*}S^{(1/2)*}(0.3927*D^2)} \\ \mbox{V=(1.49/n)*(0.25*D)^{(2/3)*}S^{(1/2)} \end{array}$

Unit Conversion Equations

1 Cubic Foot=7.4805 Galic 1 Day = 86,400 Seconds Therefore:	ons					
Cubic Foot Second	x	86,400 Seconds 1 Day	x	7.4805 Gallons 1 Cubic Foot	=	Gallon Day
Gallon Day	x	1 Million Gallons 1,000,000 Gallons	=	Million Gallons Day		