Cool Things Honey Bees Do

And the issues they face
Tim Schuler NJDA

Tim Schuler NJDA

Credentials

- Animal health Technician
- Sideline beekeeper
- Sideline pollinator
- Past President NJBA
- Past President SJBA
- Current NJ State Apiarist
- Instructor for Beginner
 beekeeping classes RU
- PTL Apiculture RU

Bees to scale

Why are Honey Bees Important?

- Pollination
- Honey
- Bees Wax
- Environment
- Joy

Honey Bees are Social Insects

- 1. Cooperate in care of young
 - Females share care of young
- 2. Reproductive division of labor
 - Some members abandon reproduction to help sisters reproduce (Queen and Workers)
 - Different jobs depending on age
 - Or time of year, and colony conditions
- 3. Overlapping generations
 - Some offspring remain in the nest to help parents rear more siblings
- Honey bees, Termites, Ants

Colony = individuals or a whole? Family

- Colony is made up of individuals
- But they cannot survive by them selves
- They need each other to survive
- There is no individual telling the rest what to do. (not a monarchy)
- They do what they do as the needs of the colony change.
- Super organism, (bees like cells in your body)

Goals

- Honey bee colony
 - Reproduce itself
 - Make it through the winter to reproduce again next year.
 - They work together selflessly.

The Colony / Family is more important than the individual

- Beekeeper
 - winter healthy colonies
 - Make a honey crop
 - Provide pollination
 - Commercial
 - Backyard

Cool things they do

- Sacrifice themselves for the colony
 - Sick fly away and die
 - Sting to protect the hive then die.
- Share their food with sisters
- Communicate
 - Nest site location. Decide as a whole which is best for colony
 - Location of food sources

Cool things they do

- Swarm
 - Method of colony reproduction
 - Most vulnerable time in lifecycle, yet gentlest
- Pollinate
 - Manageable
 - Moveable
 - Lots of foragers ~30-40K
 - Hairy

Basic Biology

Nest site

- Honey bees are cavity nesters
 - Dry, dark, cavity
 - They don't nest in the ground
 - Will nest in walls of house
 - Hollow tree, overhang (swarm decides collectivly the best site)
 - All hive work is done in the dark
 - Winter over as a unit,
 - consume stored provisions (Honey, pollen)
 - Brood rearing Cluster (not hive) temp > 95 degrees

Nest site requirements

- Low interior light
- Prefer cavity of 5-25 gallons in volume
- Ample room for combs
- Prefer small entrance easily defended
- Cavity that smells like bees previously occupied.

Once site located

- Workers smooth walls + coat with propolis
- Comb production begins
 - Bees wax produced, cell builders
 - Parallel with cells on both sides of a mid rib
 - Cells slope slightly upward 9-12 degrees
 - Mostly worker size cells (5 cells per inch)
 - Feral colonies 15% cells = drone cells (4/inch)
 - Brace comb between main combs for strength

Some feral nests

Members of the hive

- Worker ~50K
 - Do all work
- Queen 1
 - Holds the genetics for the colony.
 - Egg laying machine
- Drone ~1-4K
 - Do no work
 - Kept as needed for Mating with virgins

Things members have in common

- Head, Thorax, Abdomen, 4 wings
- Engage in Complete Metamorphosis
 - Egg, Larva, pupa, adult

Antennae

- Touch and Smell Receptors are located here.
- Guide the bee inside and outside the hive
- Can sense
 - Hive odors
 - Floral odors
 - Pheromone odors
- If antennae are removed bee will soon die

Bee Vision

- Bees have 5 eyes
 - 3 simple and 2 compound
- With compound eyes bees see
 - Color
 - Light and direction from Sun UV rays
- Color range = Violet, blue, blue green, yellow, orange
- Their eye allows them to know where the sun is even on a cloudy day

Worker Bees

- Vast majority of bees in hive
- Female not fully developed reproductive system
- Differ from queen
 - Smaller size
 - Pollen baskets
 - Inability to produce queen pheromones

Worker duties

Worker < 21 days old (Hive bee)

- Cell cleaning
- Comb building
- Queen Feeding
- Ventilation Fanning
- Propolizing
- Nectar storage

Worker duty – wax production

- 12 doa, 4 pairs of wax glands are ready
- Wax produced as needed,
 - Honey flow capping ripe honey (new wax - light)
 - Comb building (swarm)
 - Capping brood
 - Old and new wax darker color

Wax production

- Exits glands as a liquid, hardens in air
- Hard oval "scales"
- To build comb the scales are worked in mouth with added saliva heated to 109 degrees and formed into combs

Worker bees – guarding behavior

- Day 18 guarding begins
- Guard any hole/entrance in hive
 - Keeping equipment in good repair
- Guard smells every bee that enters (antenna)
 - Challenge those that don't smell right
 - In some times of year will welcome strangers
 - Other times will kill strangers

Worker duties

Worker < 21 days old (House bee)

Guard Duty – protect colony from threats

Worker bee > 21 days = foragers

- Nectar weak sugary liquid secreted from flowering plants (Carbohydrate)
- Pollen Male element of plant reproduction (protein)
- Water necessary for consumption and cooling
- Propolis Resin from woody plants,

Foragers

- Hazardous
 - Eaten, starved, lost, weather
- Field bee lives 10 21 days
- Foraging is hard on the bees but necessary
 - Tattered wings
 - Winter live longer not foraging
- Flexibility in hive as to job duties
 - Manipulation, opportunity

Foragers

- Some specialize
 - Pollen, water, propollis, nectar
- Will try to recruit sisters
- Forage 3 mile radius = 28 square miles
- Fly 12 miles per hour
- Wing stroke 11,400 times per minuet
- 1 will make 1/12 of a teaspoon of honey
- 1 hive must fly 55,000 miles to make 1 Lb

Deaths

- Workers die through out the year
- Some while foraging
- Some at night or non fly days
- When flight resumes dead bodies carried off
 - Smell
 - Fertilizer
- Some bees specialize as undertakers

Egg and Larvae

Egg

- Workers and Queens Fertilized Egg
- Drone = unfertilized egg
- The egg temp range = 91.4 96.8
- Gradual laying down of the egg
- The egg hatches not by rupturing the cell but by gradual dissolution of the eggs membrane.
 - This is unique to honey bees*

Larvae/Pupa

- White grub (6 days)
- Increases 1500 times its size during feeding
- Visited 10,000 times for feeding and cleaning inspection, and capping of cell.
- Pupa = 12 days
- Transforms from grub to adult
- Eats way out of cell
- Complete Metamorphosis

Open Brood (larva)

Pupae Capped Brood

Adult Honey Bee

- Chew through cap
- Coated with white fuzz
- Wings soft
- Start adult activities

Queen Bee

- 1 per colony
- Egg Layer up to 2000 eggs per day
- Mother of all bees in the hive
- Mates 1 x with up to 20 drones
- Controls whether egg is fertilized or not (measures cell size)
- Attendants feed and clean her, distribute queen pheromone
- If the workers sense problem they will replace her
- 16 days to develop (Royal Jelly sole food)
- Cell orientation different from worker or drone
 - Vertical Peanut like

Swarming

- Natural method of colony reproduction
- May June strong nectar flow
- Colony gets crowded
- Queen Pheromone gets diluted
- Workers start to make queen cells
- Old queen leaves with ½
 work force

Swarm

Dance Language

- Uses gathered nectar and pollen in a repeated pattern of movement to recruit sisters to join foraging that food.
- Communicate to hive mates location of water, food, and propolis.
- Can communicate distance, taste, and direction
- Karl von Frisch interpreted dance language
 - 2 Types of Dances
 - Round
 - Wagtail

Wagtail dance

- Communicates the following:
 - Source is > 88 yards
 - Distance to food
 - Direction to food
 - Smell and taste of food
 - Profitability of Source

Wagtail Dance

- Alternating half circles
 - Straight line is consistent
 - Direction is of straight is in relation to the sun
 - Vigorous side to side (waggle) movement of abdomen = (richness of food)
 - Sound production
 - Correlation between sound production time and distance

Wagtail Dance

Wagtail Dance

- Bees use sun for compass
- Bees detect polarized light to accurately fix sun position.
- Adjusts through out day, dance shifts as sun moves.
- Inside the hive they use gravity as a reference point, cannot see sun

Taste and Smell

- During dancing potential recruit bees are able to smell the flower fragrance.
- Tastes are given to let recruit's know richness of source
- The most and sweetest get liveliest dances
- Foragers shift through out day, this the most profitable resources are exploited.

Sting - Defense mechanism

- Barbed sting
- Reasons honey bees sting
 - Defend hive
 - Defend self
- Reaction
 - Swelling
 - Burning
- Remove sting by scraping
- Quicker done, lesser dose
- Bee Dies

Food Transmission Behavior

- Starving colony all die very close at 1 time
- Food transmission ensures that all get some food
- English experiment
 - 20 Ml radioactive sugar syrup fed to 6 bees
 - After 5 hrs over ½ of the foragers were "hot"
 - After 24 hrs ½ colony was "hot"
 - 48 hrs later 85% of larvae were "hot"
- Honey bees like to share

NJ Crops that use honey bees

- Blueberries ~ 15000 colonies
- Cranberries ~ 6000
- Apples
- Cucumbers / Pickles
- Squash
- Melons
- Pumpkins
- 2011 Value of those crops in NJ ~200 million

Strawberry

- Ample pollen transfer
- More uniform the berry
- Larger size of the berry

Cucumbers

- Straight even are most desirable.
- Curved uneven are pretty much worthless

Pollination

- Farmers hire beekeepers to bring hives.
- Hives are moved at night
- Beekeeper paid for service
- Range per hive = \$70.00 \$150.00
- Depends on crop
- Almonds ½ all US colonies go there for pollination

Issues facing the beekeeping industry

- Death loss
- Parasites
- Viruses
- Loss of forage
- Pesticides

NJ Winter death loss

Year	Total DL	No treatment DL	Treated DL
2007-2008	16%	26%	12%
2008-2009	35%	41%	30%
2009-2010	34%	50%	29%
2010-2011	33%	65%	18%
2011-2012	21%	44%	17%
2012-2013	31%	48%	29%
Avg	28%	46%	23%

Varroa = Beekeeper Enemy #1

Varroa Mite

- External Parasite
- Feeds on hemolymph
- Reproduces on Pupae
- Prefers Drone Pupae
 - Longer development = more baby mites

Varroa dammage

Varroa in pupa

Varroa on Honey bees

Puts things in perspective

Viruses

- Researchers have found ~ 8 viruses
- Some are vectored by Varroa Mite
- Some by plants
- Not much is really known yet
- Some believe the virulence is increasing

Loss of Forage

- "You can't preserve pollinators unless you preserve Plants"
- Pollinators need floral sources all season to stay healthy
- They like meadows, ditches, pastures, woody plants
- Hedge rows with a variety of blooming plants

Pollinators don't like

- Weed less lawns
- Grass hay fields
- Corn and soy (usually)
- Monoculture
- Golf courses

Pesticides

- 2008 Penn State Research on stored pollen
- 180 different pesticides found in samples
- All classes found
 - Pyrethroids
 - Growth regulators
 - 20 fungicides
 - 14 systemic pesticides
- Honey bees are collecting and storing contaminated pollen.
- Contributes to Honey bee decline?